A procedure for the batch microfabrication of scanning electrochemical-atomic force microscopy (SECM-AFM) probes is described. The process yields sharp AFM tips, incorporating a triangular-shaped electrode (base width 1 microm, height 0.65 microm) at the apex. Microfabrication was typically carried out on (1)/(4) 3-in. wafers, yielding 60 probes in each run. The measured spring constant of the probes was in the range 1-1.5 N m(-1). To date, processing has been carried out twice successfully, with an estimated success rate for the fabrication process in excess of 80%, based on field emission-scanning electron microscopy imaging of all probes and current-voltage measurements on a random selection of approximately 30 probes. Steady-state voltammetric measurements for the reduction of Ru(NH(3))(6)(3+) in aqueous solution indicate that the electrode response is well-defined, reproducible, and quantitative, based on a comparison of the experimental diffusion-limited current with finite element simulations of the corresponding mass transport (diffusion) problem. Topographical imaging of a sputtered Au film with the SECM-AFM probes demonstrates lateral resolution comparable to that of conventional Si(3)N(4) AFM probes. Combined electrochemical-topographical imaging studies have been carried out on two model substrates: a 10-microm-diameter disk ultramicroelectrode (UME) and an array of 1-microm-diameter UMEs, spaced 12.5 microm apart (center to center). In both cases, an SECM-AFM probe was first employed to image the topography of the substrates. The tip was then moved back a defined distance from the surface and use to detect Ru(NH(3))(6)(2+) produced at the substrate, biased at a potential to reduce Ru(NH(3))(6)(3+), present in bulk solution, at a diffusion-controlled rate (substrate generation-tip collection mode). These studies establish the success of the batch process for the mass microfabrication of SECM-AFM tips.
This paper describes in detail the use of electron beam lithography (EBL) to successfully batch microfabricate combined scanning electrochemical-atomic force microscopy (SECM-AFM) probes. At present, the process produces sixty probes at a time, on a 1/4 of a three-inch wafer. Using EBL, gold triangular-shaped electrodes can be defined at the tip apex, with plasma enhanced chemical vapor deposited silicon nitride serving as an effective insulating layer, at a thickness of 75 nm. The key features of the fabrication technique and the critical steps are discussed. The capability of these probes for SECM-AFM imaging in both tapping and constant distance mode is illustrated with dual topographical-electrochemical scans over an array of closely-spaced 1 microm diameter Pt disc electrodes, held at a suitable potential to generate an electroactive species at a transport-limited rate. As highlighted herein, understanding diffusion to heterogeneous electrode surfaces, including array electrodes, is currently topical and we present preliminary data highlighting the use of SECM-AFM as a valuable tool for the investigation of diffusion and reactivity at high spatial resolution.
A scheme for the fabrication of combined Scanning Electrochemical Microscopy -Atomic Force Microscopy (SECM-AFM) probes is presented for both silicon nitride and silicon cantilevers. The advantages over exsisting methods used for their production is explained. The process flow is described and initial results from electrodeposition of silver are presented This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.184.220.23 On: Tue
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.