Metal-halide perovskite semiconductors are of tremendous interest for a variety of applications. Only recently, solar cells based on a representative of this family have been certified with an efficiency in excess of 24%.[1] Aside from their remarkable success in photovoltaics, metal-halide perovskites are also highly promising as light emitters, e.g., in light-emitting diodes (LEDs) or lasers. [2][3][4] LEDs based on the fruit-fly of these compounds, i.e., methylammonium lead iodide (CH 3 NH 3 PbI 3 or MAPbI 3 ), and other related perovskites have been demonstrated with continuously increasing efficiency. [5][6][7] For lasers, there is the vision that perovskites may overcome/avoid the typical limitations and loss mechanisms present in organic gain media, such as triplet-singlet annihilation or absorption due to triplet excitons and
Cesium lead halide perovskites are of interest for light-emitting diodes and lasers. So far, thin-films of CsPbX 3 have typically afforded very low photoluminescence quantum yields (PL-QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX 3 nanoparticles (NPs).Here, thin films of cesium lead bromide, which show a high PL-QY of 68% and low-threshold ASE at RT, are presented. As-deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin-film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX 3 perovskites can only be achieved with NPs.
We report on the preparation and characterization of a highly sensitive organic photodiode for the entire visible part of the spectrum. The photodiode is based on a small molecule heterojunction layer of zinc phthalocyanine (ZnPC) and fullerene C 60 and is prepared by multistep vacuum deposition technique. Investigation is performed under different illumination conditions, from spectrally broad to narrow line, cw and pulsed, to determine linearity of operation, responsivity, quantum efficiency, dark current, and detectivity. The experimental results in combination with a simple device stack favor ZnPC:C 60 as active layer in organic photodiodes, e.g., for opto-electronic sensor systems.
Organic thin-film lasers (OLAS) are promising optical sources when it comes to flexibility and small-scale manufacturing. These properties are required especially for integrating organic thin-film lasers into single-mode waveguides. Optical sensors based on single-mode ridge waveguide systems, especially for Lab-on-a-chip (LoC) applications, usually need external laser sources, free-space optics, and coupling structures, which suffer from coupling losses and mechanical stabilization problems. In this paper, we report on the first successful integration of organic thin-film lasers directly into polymeric single-mode ridge waveguides forming a monolithic laser device for LoC applications. The integrated waveguide laser is achieved by three production steps: nanoimprint of Bragg gratings onto the waveguide cladding material EpoClad, UV-Lithography of the waveguide core material EpoCore, and thermal evaporation of the OLAS material Alq3:DCM2 on top of the single-mode waveguides and the Bragg grating area. Here, the laser light is analyzed out of the waveguide facet with optical spectroscopy presenting single-mode characteristics even with high pump energy densities. This kind of integrated waveguide laser is very suitable for photonic LoC applications based on intensity and interferometric sensors where single-mode operation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.