Initially, the pandemic COVID-19, caused by SARS-CoV-2, was considered to be an exclusive lung disease, eventually leading to serious respiratory symptoms 1 . In the meantime, accumulating experimental and clinical studies have suggested that SARS-CoV-2 may also cause lesions in the kidneys, heart, brain, and gastrointestinal and endocrine organs [2][3][4][5][6][7] . SARS-CoV-2 tropism towards distinct tissues is governed by cellular factors expressed on target cells such as the viral entry receptor angiotensin-converting enzyme 2 (ACE2) 8 and the transmembrane serine protease 2 (TMPRSS2) 8 . ACE2 messenger RNA 9-13 and protein 12-14 expression within the islets of Langerhans has been reported, but not yet been shown, to allow SARS-CoV-2 entry 9,12,15 . Diabetes mellitus presents Janus like in 16 ): first, pre-existing diabetes is a highly prevalent comorbidity observed in 11-22% of patients and as such increases the risk of a severe disease, requiring more intense interventions and increasing mortality [17][18][19][20][21][22] . Second, SARS-CoV-2 infection seems to affect the exocrine pancreas, manifesting as pancreatitis in 32.5% of critically ill patients 23 , and pancreatic enlargement and abnormal amylase or lipase levels in 7.5-17% of patients 9,22 . Third, metabolic dysregulation has been observed in patients with COVID-19 as:(1) increased hyperglycaemia in patients with type 2 diabetes 24 ; (2) ketoacidosis in 2-6.4% of diabetic and non-diabetic patients 18,25 ; and (3), in case studies reporting ketoacidosis on SARS-CoV-2 infection, accompanied by (4) new-onset type 1 diabetes mellitus (T1DM) in the absence of autoantibodies [26][27][28] . In a cohort study of patients with diabetes, hyperglycaemia was reported in more than 50% of all cases, and almost a third experienced diabetic ketoacidosis 29 . Finally, a multicentre study found an 80% increase of new-onset T1DM in children during the COVID-19 pandemic 30 . In accordance, a recent meta-analysis summarizes that severe SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas
ObjectiveThe generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment.DesignWe designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny.ResultsExtensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids.ConclusionsTaken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.
Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here, we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facilitates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Via time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pancreas progenitors through ductal intermediates to two types of mature duct-like cell and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial–mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic-duct models.
Background Organotypic cultures derived from pancreatic ductal adenocarcinoma (PDAC) termed pancreatic ductal cancer organoids (PDOs) recapitulate the primary cancer and can be derived from primary or metastatic biopsies. Although isolation and culture of patient-derived pancreatic organoids were established several years ago, pros and cons for individualized medicine have not been comprehensively investigated to date. Methods We conducted a feasibility study, systematically comparing head-to-head patient-derived xenograft tumor (PDX) and PDX-derived organoids by rigorous immunohistochemical and molecular characterization. Subsequently, a drug testing platform was set up and validated in vivo. Patient-derived organoids were investigated as well. Results First, PDOs faithfully recapitulated the morphology and marker protein expression patterns of the PDXs. Second, quantitative proteomes from the PDX as well as from corresponding organoid cultures showed high concordance. Third, genomic alterations, as assessed by array-based comparative genomic hybridization, revealed similar results in both groups. Fourth, we established a small-scale pharmacotyping platform adjusted to operate in parallel considering potential obstacles such as culture conditions, timing, drug dosing, and interpretation of the results. In vitro predictions were successfully validated in an in vivo xenograft trial. Translational proof-of-concept is exemplified in a patient with PDAC receiving palliative chemotherapy. Conclusion Small-scale drug screening in organoids appears to be a feasible, robust and easy-to-handle disease modeling method to allow response predictions in parallel to daily clinical routine. Therefore, our fast and cost-efficient assay is a reasonable approach in a predictive clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.