Accumulating evidence from clinical and preclinical studies shows that catechol-O-methyltransferase (COMT) plays a significant role in dopamine metabolism in the prefrontal cortex, but not in the striatum. However, to what extent dopamine overflow in the prefrontal cortex and striatum is controlled by enzymatic degradation versus reuptake is unknown. We used COMT deficient mice to investigate the role of COMT in these two brain regions with in vivo voltammetry. A real-time analysis of evoked dopamine overflow showed that removal of dopamine was twofold slower in the prefrontal cortex of mice lacking COMT than in wild-type mice, indicating that half of the dopamine decline in this brain region results from COMT-mediated enzymatic degradation. Lack of COMT did not influence dopamine overflow/decline in the dorsal striatum. COMT-deficient mice demonstrated a small (20 -25%) but consistent increase in evoked dopamine release in the prefrontal cortex, but not in the dorsal striatum. Cocaine affected equally dopaminergic neurotransmission in the prefrontal cortex in both genotypes by prolonging 3-4 times dopamine elimination from extracellular space. Paradoxically, this happened without increase of the peak levels of evoked dopamine release. The present findings represent the first demonstration of the significant contribution of COMT in modulating the dynamics of dopamine overflow in the prefrontal cortex and underscore the therapeutic potential of manipulating COMT activity to alter dopaminergic neurotransmission in the prefrontal cortex.
Catechol-O-methyltransferase (COMT) catalyses the O-methylation of compounds having a catechol structure and its main function involves the elimination of biologically active or toxic catechols and their metabolites. By means of homologous recombination in embryonic stem cells, a strain of mice has been produced in which the gene encoding the COMT enzyme is disrupted. We report here the levels of catecholamines and their metabolites in striatal extracellular fluid in these mice as well as in homogenates from different parts of the brain, under normal conditions and after acute levodopa administration. In immunoblotting studies, COMT-knockout mice had no COMT protein in brain or kidney tissues but the amounts of catecholamine synthesizing and other metabolizing enzyme proteins were normal. Under normal conditions, COMT deficiency does not appear to affect significantly brain dopamine and noradrenaline levels in spite of relevant changes in their metabolites. This finding is consistent with previous pharmacological studies with COMT inhibitors and confirms the pivotal role of synaptic reuptake processes and monoamine oxidase-dependent metabolism in terminating the actions of catecholamines at nerve terminals. In contrast, when COMT-deficient mice are challenged with l-dihydroxyphenylalanine, they show an extensive accumulation of 3,4-dihydroxyphenylacetic acid and dihydroxyphenylglycol and even dopamine, revealing an important role for COMT under such situations. Notably, in some cases these changes appear to be Comt gene dosage-dependent, brain-region specific and sexually dimorphic. Our results may have implications for improving the treatment of Parkinson's disease and for understanding the contribution of the natural variation in COMT activity to psychiatric phenotypes.
These results indicate that attachment of phenylalanine to a cationic drug via an amide bond from the meta-position of its aromatic ring could be highly applicable in prodrug design for LAT1-mediated CNS-delivery of not only anionic but also cationic polar drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.