The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. AbstractNumerical weather forecasts, such as meteorological forecasts of precipitation, are inherently uncertain. These uncertainties depend on model physics as well as initial and boundary conditions. Since precipitation forecasts form the input into hydrological models, the uncertainties of the precipitation forecasts result in uncertainties of flood forecasts. In order to consider these uncertainties, ensemble prediction systems are applied. These systems consist of several members simulated by different models or using a single model under varying initial and boundary conditions. However, a too wide uncertainty range obtained as a result of taking into account members with poor prediction skills may lead to underestimation or exaggeration of the risk of hazardous events. Therefore, the uncertainty range of model-based flood forecasts derived from the meteorological ensembles has to be restricted.In this paper, a methodology towards improving flood forecasts by weighting ensemble members according to their skills is presented. The skill of each ensemble member is evaluated by comparing the results of forecasts corresponding to this member with observed values in the past. Since numerous forecasts are required in order to reliably evaluate the skill, the evaluation procedure is time-consuming and tedious. Moreover, the evaluation is highly subjective, because an expert who performs it makes his decision based on his implicit knowledge.Therefore, approaches for the automated evaluation of such forecasts are required. Here, we present a semi-automated approach for the assessment of precipitation forecast ensemble 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 members. The approach is based on supervised machine learning and was tested on ensemble precipitation forecasts for the area of the Mulde river basin in Germany. Based on the evaluation results of the specific ensemble members, weights corresponding to their forecast skill were calculated. These weights were then successfully used to reduce the uncertainties within rainfall-runoff simulations and flood risk predictions. *Manuscript Click here to view linked References
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.