We describe the common clinical manifestations of the six prototypic organ system dysfunction syndromes of severe sepsis and review the associated epidemiology and suspected pathophysiology.
We used the retrograde-catheter technique to investigate the effect of a helium-oxygen gas mixture (HeO2) on resistance to maximum expiratory flow (Vmax) in airways subsegments between alveoli and the equal pressure point (EPP), and between EPP and the flow-limiting segment (FLS). FLS were found at the same site in main-stem bronchi on both air and HeO2 in most dogs studied. Static elastic recoil pressure (Pel = 7 +/- 1 cmH2O) and the lateral pressure at FLS (Ptm' = 11 +/- cmH2O) were not different on the two gases, and delta Vmax averaged 33 +/- 12%. EPP were located on HeO2 in segmental bronchi (7 +/- 2 mm ID), and EPP on air were always located more downstream. There was no density dependence of resistance between alveoli and EPP on HeO2, and delta Vmax was due to the marked density dependence of the pressure losses of convective acceleration in the short airway segment between EPP HeO2 and FLS. Assuming that FLS is the "choke point," these findings are consistent with wave-speed theory of flow limitation modified to account for viscous pressure losses in peripheral airways. These results and conclusions question previous interpretations of delta Vmax as an index of peripheral airways obstruction, and demonstrate the utility of wave-speed theory in explaining complicated mechanisms of expiratory flow limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.