The plastid trnL-F region has proved useful in molecular phylogenetic studies addressing diverse evolutionary questions from biogeographic history to character evolution in a broad range of plant groups. An important assumption for phylogenetic reconstruction is that data used in combined analyses contain the same phylogenetic signal. The trnL-F region is often used in combined analyses of multiple chloroplast markers. These markers are assumed to contain congruent phylogenetic signal due to lack of recombination. Here we show that trnL-F sequences display a phylogenetic signal conflicting with that of other chloroplast markers in Annonaceae, and we demonstrate that this conflict results from ancient paralogy. TrnL-F copy 2 diverged from trnL-F copy 1 (as used in family-wide phylogenetic analyses) in a direct ancestor of the Annonaceae. Although this divergence dates back 88 million years or more, the exons of both copies appear to be intact. In this case, assuming that (putative) chloroplast markers contain the same phylogenetic signal results in an incorrect topology and an incorrect estimate of ages. Our study demonstrates that researchers should be cautious when interpreting gene phylogenies, irrespective of the genome from which they are presumed to have been sampled.
A tospovirus causing necrotic streaks on leaves was isolated from Alstroemeria sp. in Colombia. Infected samples reacted positively with tomato spotted wilt virus (TSWV) antiserum during preliminary serological tests. Further analysis revealed a close serological relationship to tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV). A major part of the S-RNA segment, encompassing the nucleocapsid (N) protein gene, the 5′ untranslated region and a part of the intergenic region 3′ of the N gene, was cloned and sequenced. The deduced N protein sequence showed highest amino acid identity (82%) to that of TCSV, indicating that the virus represents a new tospovirus species, for which the name Alstroemeria necrotic streak virus (ANSV) is coined. Phylogenetic analysis based on the N protein sequence revealed that this Alstroemeria-infecting tospovirus clustered with tospoviruses from the American continent. Frankliniella occidentalis was identified as potential vector species for ANSV.
In autumn 2006 in the Netherlands, Potato spindle tuber viroid (PSTVd) infections were detected in 42AE3 and 71AE9% of professionally grown lots of Brugmansia spp. and Solanum jasminoides respectively. The infected lots contained 73 985 and 431 374 plants, respectively, demonstrating the presence of many potential viroid sources for tomato (Solanum lycopersicum). PSTVd was identified in cultivars of Brugmansia · candida, B. · flava, B. sanguinea, B. suaveolens and unspecified Brugmansia species ⁄ cultivars. Most infected lots of Brugmansia spp. originated from a single Dutch nursery; most infected lots of S. jasminoides originated abroad. Sequence analysis revealed that the PSTVd genomes from Brugmansia spp. contained an average of 360 nt, whereas all genomes from S. jasminoides except one consisted of 357 nt. Furthermore, the collective PSTVd genotypes showed polymorphism at four or more positions, except for two cases in which genotypes from Brugmansia spp. and S. jasminoides were identical. Phylogenetic studies showed that PSTVd genotypes from Brugmansia spp. and S. jasminoides grouped apart from each other and from PSTVd isolates from potato (Solanum tuberosum) and Physalis peruviana. The PSTVd genotypes from tomato did not form a separate cluster, but were dispersed over clusters of vegetatively or partly vegetatively propagated plant species, i.e. potato, P. peruviana and S. jasminoides. Moreover, mechanical inoculation of the predominant PSTVd genotypes from S. jasminoides to tomato was successful. These results provide evidence that vegetatively propagated, solanaceous plant species have been sources of infection for tomato crops in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.