No reactions confirming the potentially allergic effect on laboratory rats were observed; its hepatoprotective and anti-inflammatory effect was confirmed on a model of acute liver damage.
The achievement of rapid hemostasis represents a long-term trend in hemostatic research. Specifically, composite materials are now the focus of attention, based on the given issues and required properties. In urology, different materials are used to achieve fast and effective hemostasis. Additionally, it is desirable to exert a positive influence on local tissue reaction. In this study, three nonwoven textiles prepared by a wet spinning method and based on a combination of hyaluronic acid with either oxidized cellulose or carboxymethyl cellulose, along with the addition of etamsylate, were introduced and assessed in vivo using the rat partial nephrectomy model. A significantly shorter time to hemostasis in seconds (p < 0.05), was attributed to the effect of the carboxymethyl cellulose material. The addition of etamsylate did not noticeably contribute to further hemostasis, but its application strengthened the structure and therefore significantly improved the effect on local changes, while also facilitating any manipulation by the surgeons. Specifically, the hyaluronic acid supported the tissue healing and regeneration, and ensured the favorable results of the histological analysis. Moreover, the prepared textiles proved their bioresorbability after a three-day period. In brief, the fabrics yielded favorable hemostatic activity, bioresorbability, non-irritability, and had a beneficial effect on the tissue repair.
Various hemostatics are used for renal surgical procedures. We investigated the hemostatic efficacy of cellulose derivatives on the model of partial nephrectomy in rats focusing on the local reaction of renal parenchyma. A total of 50 Wistar rats were divided into five groups of 10 animals each. Partial nephrectomy of the caudal pole without hilar vascular control was performed. Oxidized cellulose (OC), sodium salt of oxycellulose (OCN), carboxymethyl cellulose (CMC), dialdehyde cellulose (DAC), and gelatin-based hemostatic (C) were applied to the bleeding wounds. The time to hemostasis was monitored. Half of the animals were euthanized after 3 days, the second half 30 days from the experiment start date. The left kidney was excised and subjected to histopathological examination. The biochemical data was subjected to statistical analysis. The time to hemostasis in all groups was significantly less than in the C group (in OC p = 0.0057, OCN p = 0.0039, CMC and DAC p = 0.0001). In the C group, massive hemorrhages and necrosis did occur. In the OC and OCN groups, there were regenerative changes, a receding inflammatory reaction and hemorrhage. DAC caused an immune reaction and massive interstitial hemorrhages with biochemical signs of liver damage. Parenchyma in CMC revealed a reduction of necrosis and interstitial hemorrhages with regenerative processes. The most effective hemostatics were CMC and OC, achieving the best results both in the time to hemostasis, and for histopathological evaluation.
Different topical hemostatic materials are used to achieve effective hemostasis. High hemostatic activity, biocompatibility, bioresorbability, and easy manipulation are to be expected in such a developed product. In the surgical world with these speci c requirements, nding a proper hemostatic agent is very di cult. The study compared several materials of various construction properties, which were assessed for structural and related properties by morphological analyses and assessed in vivo for their e ciency and behaviour using a model of rat partial nephrectomy. New sodium salt of carboxymethyl cellulose (CMC) sponge with the lowest porosity and free swell absorptive capacity contained the highest amount of hydroxyl and carboxyl groups. Results revealed that this CMC material in the form of a bioresorbable sponge may ensure the necessary hemostatic effects, while also providing a positive in uence on the reaction of the local tissue. The CMC material also needed signi cantly less time to achieve hemostasis (p < 0.001). Moreover, the sponge reached satisfactory results in the histopathological evaluation with the lowest destruction score and favorable healing reaction. This modi ed product proved itself to be a promising bioresorbable hemostat, which, according to its design, matches with its surgical applications. In general, the obtained data elucidated the dependency of the total effect on its structure and composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.