Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya , previously the Pectobacterium chrysanthemi complex ( Erwinia chrysanthemi ), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi , showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya . The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA–DNA hybridization studies, showed that although related to Dickeya dadantii , these isolates represent a novel species within the genus Dickeya , for which the name Dickeya solani sp. nov. (type strain IPO 2222T = LMG25993T = NCPPB4479T) is proposed.
Bacteria belonging to the genera Dickeya and Pectobacterium are responsible for significant economic losses in a wide variety of crops and ornamentals. During last years, increasing losses in potato production have been attributed to the appearance of Dickeya solani. The D. solani strains investigated so far share genetic homogeneity, although different virulence levels were observed among strains of various origins. The purpose of this study was to investigate the genetic traits possibly related to the diverse virulence levels by means of comparative genomics. First, we developed a new genome assembly pipeline which allowed us to complete the D. solani genomes. Four de novo sequenced and ten publicly available genomes were used to identify the structure of the D. solani pangenome, in which 74.8 and 25.2% of genes were grouped into the core and dispensable genome, respectively. For D. solani panregulon analysis, we performed a binding site prediction for four transcription factors, namely CRP, KdgR, PecS and Fur, to detect the regulons of these virulence regulators. Most of the D. solani potential virulence factors were predicted to belong to the accessory regulons of CRP, KdgR, and PecS. Thus, some differences in gene expression could exist between D. solani strains. The comparison between a highly and a low virulent strain, IFB0099 and IFB0223, respectively, disclosed only small differences between their genomes but significant differences in the production of virulence factors like pectinases, cellulases and proteases, and in their mobility. The D. solani strains also diverge in the number and size of prophages present in their genomes. Another relevant difference is the disruption of the adhesin gene fhaB2 in the highly virulent strain. Strain IFB0223, which has a complete adhesin gene, is less mobile and less aggressive than IFB0099. This suggests that in this case, mobility rather than adherence is needed in order to trigger disease symptoms. This study highlights the utility of comparative genomics in predicting D. solani traits involved in the aggressiveness of this emerging plant pathogen.
The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in storage thereby reducing yield and quality. Efficient and cost-effective detection and identification methods are essential to investigate the ecology and pathogenesis of the SRE as well as in seed certification programmes. The aim of this review was to collect all existing information on methods available for SRE detection. The review reports on the sampling and preparation of plant material for testing and on over thirty methods to detect, identify and differentiate the soft rot and blackleg causing bacteria to species and subspecies level. These include methods based on biochemical characters, serology, molecular techniques which rely on DNA sequence amplification as well as several less-investigated ones.
Bacteria from the genera Dickeya (formerly Erwinia chrysanthemi) and Pectobacterium (formerly E. carotovora) are the agents of blackleg and soft rot on many important crops. In 2005, Dickeya solani was isolated for the first time in Poland from a symptomatic potato plant. To establish the presence and diversity of Dickeya spp. in Poland, we surveyed potato fields and water sources, including surface waters near potato fields and water from potato-processing facilities and sewage plants. Only D. dianthicola and D. solani were isolated from symptomatic potato, and only D. zeae and D. chrysanthemi were isolated from water sources. The Dickeya spp. isolated from potato formed a relatively homogenous group, while those from water sources were more diverse. To our knowledge, this is the first comprehensive characterization of Dickeya spp. isolated during several years from regions with a temperate climate in Central Europe.
Until recently Dickeya was regarded as a pathogen not established in Finland. As a result the blackleg symptom observed on potato was often associated with Pectobacterium atrosepticum. The occurrence of Dickeya spp. on potato in Finland was first reported in 2004. Since then the prevalence of Dickeya has been monitored through surveys and routine test of seed lots produced in the country. The results of monitoring of Dickeya spp. in seed lots produced in Finland between the years 2004 and 2008 indicated a steady increase in the incidence of Dickeya spp. The highest incidence was observed in samples from the 2006 growing season where about 37% were positive for Dickeya spp. The summer in 2006 was one of the warmest summers recorded in 100 years in Finland. The majority of infected lots were imported varieties. Since recently heavy blackleg outbreaks have occurred in production fields in the High Grade (HG) zone. A detailed study of these incidents of blackleg outbreaks in North Finland during the years 2008 and 2010 indicated that Dickeya spp. was the major component in the observed blackleg complex. It was detected and isolated from almost all symptomatic plants investigated. Repetitive sequences PCR (REP-PCR) and Pulsed Field Gel Electrophoresis (PFGE) analysis of strains isolated in Finland showed identical pattern with those isolated recently in other European countries with a proposed name 'Dickeya solani'. Moreover, the dnaX gene sequence of the representative strains isolated in Finland indicated 100% similarity to the dnaX sequences of 'D. solani'. The study presents the first report of a detailed analysis of bacteria involved in potato blackleg complex from natural field outbreaks in North Finland HG zone and characterisation of the 'D. solani' strains playing the major role in the disease complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.