The reduction in electronic recombination losses by the passivation of surfaces is a key factor enabling high‐efficiency solar cells. Here a strategy to passivate surface trap states of TiO2 films used as cathode interlayers in organic photovoltaics (OPVs) through applying alumina (Al2O3) or zirconia (ZrO2) insulating nanolayers by thermal atomic layer deposition (ALD) is investigated. The results suggest that the surface traps in TiO2 are oxygen vacancies, which cause undesirable recombination and high electron extraction barrier, reducing the open‐circuit voltage and the short‐circuit current of the complete OPV device. It is found that the ALD metal oxides enable excellent passivation of the TiO2 surface followed by a downward shift of the conduction band minimum. OPV devices based on different photoactive layers and using the passivated TiO2 electron extraction layers exhibit a significant enhancement of more than 30% in their power conversion efficiencies compared to their reference devices without the insulating metal oxide nanolayers. This is a result of significant suppression of charge recombination and enhanced electron extraction rates at the TiO2/ALD metal oxide/organic interface.
High capacitance density three-dimensional (3D) metal-insulator-semiconductor (MIS) capacitors using Si nanowires (SiNWs) by metal-assisted chemical etching and atomic-layer-deposited alumina dielectric film were fabricated and electrically characterized. A chemical treatment was used to remove structural defects from the nanowire surface, in order to reduce the density of interface traps at the Al2O3/SiNW interface. SiNWs with two different lengths, namely, 1.3 μm and 2.4 μm, were studied. A four-fold capacitance density increase compared to a planar reference capacitor was achieved with the 1.3 μm SiNWs. In the case of the 2.4 μm SiNWs this increase was ×7, reaching a value of 4.1 μF/cm2. Capacitance-voltage (C-V) measurements revealed that, following a two-cycle chemical treatment, frequency dispersion at accumulation regime and flat-band voltage shift disappeared in the case of the 1.3 μm SiNWs, which is indicative of effective removal of structural defects at the SiNW surface. In the case of the 2.4 μm SiNWs, frequency dispersion at accumulation persisted even after the two-step chemical treatment. This is attributed to a porous Si layer at the SiNW tops, which is not effectively removed by the chemical treatment. The electrical losses of MIS capacitors in both cases of SiNW lengths were studied and will be discussed.
Atomic layer deposition of HfO2 significantly increases the efficiency and prolongs the lifetime of organic solar cells.
Polymer solar cells have attracted tremendous interest in the highly competitive solar energy sector, due to the practical advantages they exhibit, such as being lightweight, flexible, and low cost, in stark contrast to traditional photovoltaic technologies. However, their successful commercialization is still hindered by issues related to device instability. Here, atomic layer deposition (ALD) is employed to deposit conformal ultrathin dielectrics, such as alumina (Al2O3) and zirconia (ZrO2), on top of ZnO electron extraction layers to address problems that arise from the defect‐rich nature of these layers. The deposition of dielectrics on ZnO significantly improves its interfacial electronic properties, manifested primarily with the decrease in the work function of ZnO and the concomitant reduction of the electron extraction barrier as well as the reduced recombination losses. Significant efficiency enhancement is obtained with the incorporation of six ALD cycles of Al2O3 into inverted devices, using photoactive layers, that consist of poly(3‐hexylthiophene):indene‐C60‐bisadduct or poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl] thieno[3,4‐b] thiophenediyl}):[6,6]‐phenyl‐C70‐butyric acid methyl ester. More importantly, upon performing lifetime studies (over a period of 350 h), a strong improvement in polymer solar cell stability is observed when using the ALD‐modified ZnO films.
Si nanowires (SiNWs) produced by metal-assisted chemical etching on n-type Si were investigated for their use as a light-trapping material in c-Si solar cells. The nanowires were fabricated before junction formation (on a lightly doped Si substrate) so that their core was bulk and nonporous. The above fabrication process was implemented in solar cell fabrication. The SiNW reflectivity was tested at different steps of solar cell processing and found to be lower than that of conventional random pyramids used in c-Si solar cells. Contact formation on the front side of the cell was investigated by considering metal deposition either directly on the nanowires or on bulk areas in between the nanowire areas. The superiority of this second case was demonstrated. Three different Si nanowire lengths were investigated, namely, 0.5, 1, and 1.5 μm, the case of 1 μm giving better results in terms of solar cell characteristics and external quantum efficiency. The electronic quality of the Si nanowire surface was investigated using the corresponding metal-oxide-semiconductor capacitors with atomic-layer-deposited alumina dielectric. Successful reduction of surface recombination centers at the large Si nanowire surface was achieved by reducing structural defects at their surface through a specific chemical treatment. Finally, using the determined optimized conditions for Si nanowire formation, chemical cleaning, and process implementation in solar cell fabrication, we demonstrated ∼45% increase in solar cell efficiency with 1 μm SiNWs compared to that from a flat reference cell processed under similar conditions. The above study was made on test solar cells without surface passivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.