Background: Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. Methods: The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. Results: The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. Conclusion: The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α.
Background/Aims: The risk of heart disease is higher in males than in females. However, this advantage of females declines with increasing age, presumably a consequence of decreased estrogen secretion and malfunctioning of the estrogen receptor. We previously demonstrated that 17β-estradiol (E2) prevents cardiomyocyte hypertrophy, autophagy and apoptosis via estrogen receptor α (ERα), but the effects of ERβ on myocardial injury remained elusive. The present paper thus, investigated the cardioprotective effects of estrogen (E2) and ERβ against hypoxia-induced cell death. Methods: Transient transfection of Tet-On ERβ gene construct was used to overexpress ERβ in hypoxia-treated H9c2 cardiomyoblast cells. Results: Our data revealed that IGF1R, Akt phosphorylation and Bcl-2 expression are enhanced by ERβ in H9c2 cells. Moreover, ERβ overexpression reduced accumulation of hypoxia-related proteins, autophagy-related proteins and mitochondria-apoptotic proteins and enhanced the protein levels of Bcl-2, pAkt and Bad under hypoxic condition. In neonatal rat ventricular myocytes (NRVMs), we observed that hypoxia induced cell apoptosis as measured by TUNEL staining, and E2 and/or ERβ could totally abolish hypoxia-induced apoptosis. The suppressive effects of E2 and/or ERβ in hypoxia-treated NRVMs were totally reversed by ER antagonist, ICI. Taken together, E2 and/or ERβ exert the protective effect through repressed hypoxia-inducible HIF-1α, BNIP3 and IGFBP-3 levels to restrain the hypoxia-induced autophagy and apoptosis effects in H9c2 cardiomyoblast cells. Conclusion: The results suggest that females probably could tolerate better prolonged hypoxia condition than males, and E2/ERβ treatment could be a potential therapy to prevent hypoxia-induced heart damage.”
The HIF-1α transcriptional factor and the BH-3 only protein BNIP3 are known to play fundamental roles in response to hypoxia. The objective of this research is to investigate the molecular mechanisms and the correlation of HIF-1α, BNIP3 and IGFBP-3 in hypoxia-induced cardiomyocytes injuries. Heart-derived H9c2 cells and neonatal rat ventricular myocytes (NRVMs) were incubated in normoxic or hypoxic conditions. Hypoxia increased HIF-1α expression and activated the downstream BNIP3 and IGFBP-3 thereby triggered mitochondria-dependent apoptosis. Moreover, IGF1R/PI3K/Akt signaling was attenuated by HIF-1α-dependent IGFBP-3 expression to enhance hypoxia-induced apoptosis. Autophagy suppression with 3-methyladenine or siATG5 or siBeclin-1 significantly decreased myocardial apoptosis under hypoxia. Knockdown of FoxO3a or BNIP3 significantly abrogated hypoxia-induced autophagy and mitochondria-dependent apoptosis. Moreover, prolonged-hypoxia induced HIF-1α stimulated BNIP3 and enhanced IGFBP-3 activation to inhibit IGF1R/PI3K/Akt survival pathway and mediate mitochondria-dependent cardiomyocyte apoptosis. HIF-1α and FoxO3a blockage are sufficient to annul the change of excessive hypoxia of hearts.
Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC). The expression of matrix metalloproteinases (MMPs) has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM) promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.