Key results from the EU H2020 project CENTRELINE are presented. The research activities undertaken to demonstrate the proof of concept (technology readiness level—TRL 3) for the so-called propulsive fuselage concept (PFC) for fuselage wake-filling propulsion integration are discussed. The technology application case in the wide-body market segment is motivated. The developed performance bookkeeping scheme for fuselage boundary layer ingestion (BLI) propulsion integration is reviewed. The results of the 2D aerodynamic shape optimization for the bare PFC configuration are presented. Key findings from the high-fidelity aero-numerical simulation and aerodynamic validation testing, i.e., the overall aircraft wind tunnel and the BLI fan rig test campaigns, are discussed. The design results for the architectural concept, systems integration and electric machinery pre-design for the fuselage fan turbo-electric power train are summarized. The design and performance implications on the main power plants are analyzed. Conceptual design solutions for the mechanical and aero-structural integration of the BLI propulsive device are introduced. Key heuristics deduced for PFC conceptual aircraft design are presented. Assessments of fuel burn, NOx emissions, and noise are presented for the PFC aircraft and benchmarked against advanced conventional technology for an entry-into-service in 2035. The PFC design mission fuel benefit based on 2D optimized PFC aero-shaping is 4.7%.
The paper discusses optimality constellations for the design of boundary layer ingesting propulsive fuselage concept aircraft under special consideration of different fuselage fan power train options. Therefore, a rigorous methodical approach for the evaluation of the power saving potentials of propulsive fuselage concept aircraft configurations is provided. Analytical formulation for the power-saving coefficient metric is introduced, and, the classic Breguet-Coffin range equation is extended for the analytical assessment of boundary layer ingesting aircraft fuel burn. The analytical formulation is applied to the identification of optimum propulsive fuselage concept power savings together with computational fluid dynamics numerical results of refined and optimised 2D aero-shapings of the bare propulsive fuselage concept configuration, i.e. fuselage body including the aft-fuselage boundary layer ingesting propulsive device, obtained during the European Union-funded DisPURSAL and CENTRELINE projects. A common heuristic for the boundary layer ingesting efficiency factor is derived from the best aero-shaping cases of both projects. Based thereon, propulsive fuselage concept aircraft design optimality is parametrically analysed against variations in fuselage fan power train efficiency, systems weight impact and fuselage-to-overall aircraft drag ratio in cruise. Optimum power split ratios between the fuselage fan and the underwing main fans are identified. The paper introduces and discusses all assumptions necessary in order to apply the presented evaluation approach. This includes an in-depth explanation of the adopted system efficiency definitions and drag/thrust bookkeeping standards.
to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.
Junction flow caused by the aerodynamic interaction between a wind-tunnel model and the support structure can largely influence the flowfield and hence the experimental results. This paper discusses a combined numerical and experimental study which was carried out to mitigate the model–support interference in a wind-tunnel test setup for the study of fuselage boundary-layer ingestion. The setup featured an axisymmetric fuselage mounted through a support beam, covered by a wing-shaped fairing. The junction flow appearing at the fuselage–fairing connection produced undesired flow distortions at the fuselage aft section, due to the formation of an horseshoe vortex structure at the fairing leading edge. Numerical and experimental analysis were performed with the aim of reducing the distortion intensity by improving the fairing design. Results show that modifying the leading-edge shape of the fairing effectively decreased the flowfield distortions. Moreover, the addition of a dummy fairing diametrically opposed to the first one was found to be beneficial due to the enhancement of the configuration symmetry.
Boundary Layer Ingestion (BLI) is a technology that promises fuel consumption benefits for future civil aircraft. However, it introduces detrimental aerodynamic interactions between the propulsor and the airframe. In particular, the inflow to the BLI propulsor is affected by the flow around the airframe elements. The non-uniform inflow can influence the fan aerodynamic, aeroacoustic and aeroelastic performance. As a consequence, the fan design needs to tolerate the inlet distortions in all the flight phases. This paper discusses an experimental study of the aerodynamic performance of an aircraft with a BLI propulsor integrated at the aft-fuselage section, representative of a Propulsive Fuselage Concept (PFC) aircraft. Aerodynamic load measurements show that the BLI propulsor affects the longitudinal and lateral-directional equilibrium of the aircraft in off-cruise conditions. Flow measurements at the BLI propulsor inlet indicate that the fuselage boundary layer induces the strongest total pressure distortion. However, particularly at a non-zero sideslip angle, the vertical tail plane strongly affects the inflow to the BLI propulsor, introducing non-symmetric total pressure and velocity distortions. The analysis of the momentum and power fluxes in the flowfield show that around 20% of the total aircraft drag is produced in the fuselage boundary layer, while around 5% of the total aircraft drag power is dissipated in the fuselage wake. Furthermore, the BLI propulsor substantially reduces the axial kinetic energy flux in the fuselage boundary layer (the so-called "wake-filling" effect), suggesting an increased propulsive efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.