Climate and weather variables such as rainfall, temperature, and pressure are indicators for hazards such as tropical cyclones, floods, and fires. The impact of these events can be due to a single variable being in an extreme state, but more often it is the result of a combination of variables not all of which are necessarily extreme. Here, the combination of variables or events that lead to an extreme impact is referred to as a compound event. Any given compound event will depend upon the nature and number of physical variables, the range of spatial and temporal scales, the strength of dependence between processes, and the perspective of the stakeholder who defines the impact. Modeling compound events is a large, complex, and interdisciplinary undertaking. To facilitate this task we propose the use of influence diagrams for defining, mapping, analyzing, modeling, and communicating the risk of the compound event. Ultimately, a greater appreciation of compound events will lead to further insight and a changed perspective on how impact risks are associated with climate‐related hazards. WIREs Clim Change 2014, 5:113–128. doi: 10.1002/wcc.252
This article is categorized under:
Climate Models and Modeling > Knowledge Generation with Models
Assessing Impacts of Climate Change > Representing Uncertainty
This paper presents a strategy for diagnosing and interpreting hydrological nonstationarity, aiming to improve hydrological models and their predictive ability under changing hydroclimatic conditions. The strategy consists of four elements: (i) detecting potential systematic errors in the calibration data; (ii) hypothesizing a set of ''nonstationary'' parameterizations of existing hydrological model structures, where one or more parameters vary in time as functions of selected covariates; (iii) trialing alternative stationary model structures to assess whether parameter nonstationarity can be reduced by modifying the model structure; and (iv) selecting one or more models for prediction. The Scott Creek catchment in South Australia and the lumped hydrological model GR4J are used to illustrate the strategy. Streamflow predictions improve significantly when the GR4J parameter describing the maximum capacity of the production store is allowed to vary in time as a combined function of: (i) an annual sinusoid; (ii) the previous 365 day rainfall and potential evapotranspiration; and (iii) a linear trend. This improvement provides strong evidence of model nonstationarity. Based on a range of hydrologically oriented diagnostics such as flow-duration curves, the GR4J model structure was modified by introducing an additional calibration parameter that controls recession behavior and by making actual evapotranspiration dependent only on catchment storage. Model comparison using an information-theoretic measure (the Akaike Information Criterion) and several hydrologically oriented diagnostics shows that the GR4J modifications clearly improve predictive performance in Scott Creek catchment. Based on a comparison of 22 versions of GR4J with different representations of nonstationarity and other modifications, the model selection approach applied in the exploratory period (used for parameter estimation) correctly identifies models that perform well in a much drier independent confirmatory period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.