Contradicting results can be found in the literature on effects from magnetic exposure to pigment cells. We have studied the influence of strong, static, homogenous magnetic fields of 8 and 14 T on melanophore aggregation during exposure to the field. Melanophores, black pigment cells, in fish are large flat cells having intracellular black pigment granules. Due to large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes. This is especially true for modeling nerve cells, since melanophores share stem cells with axons. Twenty experiments on black tetra fish fins were carried out in the two magnetic flux densities. The same number of control experiments were carried out in the magnet with the magnetic field turned off. Several factors, such as the degree of maximal aggregation, speed of aggregation, and irregularity of the speed, were examined. The statistical analysis showed no significant field effects on the aggregation, with one exception: the irregularity in aggregation speed in the 8 T field, compared to control. The believed reorientation of the cytoskeleton (microtubules) in the field or the induced Lorentz force on moving pigment granules, did not affect the aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.