New legislation to encourage the recycling of end of life electronics and moves to implement sustainable development in electronics manufacturing have focussed attention on the large quantity of printed circuit boards (PCBs) being consigned to landfill. Also, in a recent investigation conducted on behalf of the UK's Department of Trade and Industry, the need for new methodologies for dealing with end of life circuit boards was identified as a priority issue. Within the UK it is estimated that ∼50,000 tonnes per annum of PCB scrap is currently generated and investigations indicate that only ∼15 per cent is subjected to any form of recycling, with the remainder consigned to landfill. This paper reports the results of a scoping study carried out to identify the technologies and processes that can be used to recycle materials from end of life PCBs.
PurposeThis paper aims to present a review carried out under DEFRA‐funded project WRT208, describing: the composition of WEEE, current treatment technologies, emerging technologies and research.Design/methodology/approachThis paper summarises the output from the first part of the project. It provides information on the composition of WEEE and an extensive survey of technologies relevant to materials recycling from WEEE. A series of further papers will be published from this research project.FindingsWEEE has been identified as one of the fastest growing sources of waste in the EU, and is estimated to be increasing by 16‐28 per cent every five years. Within each sector a complex set of heterogeneous secondary wastes is created. Although treatment requirements are complicated, the sources from any one sector possess many common characteristics. However, there exist huge variations in the nature of electronic wastes between sectors, and treatment regimes appropriate for one cannot be readily transferred to another.Research limitations/implicationsA very large number of treatment technologies are available, both established and emerging, that singly and in combination could address the specific needs of each sector. However, no single set of treatment methods can be applied universally.Originality/valueThis paper is the first part of work leading to the development of technical strategies and methodologies for reprocessing WEEE into primary and secondary products, and where possible the recovery of higher added‐value components and materials.
Increasing awareness of man's impact on the environment and pressure to behave in a more sustainable manner are encouraging both the recycling and reuse of materials and the replacement of hazardous chemicals with more benign ones. The Waste Electrical and Electronic Equipment (WEEE) Directive and the Restriction on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive, have recently been adopted into law with the specific intention of further encouraging these activities through legislation. In addition to these directives, there is a growing need to adopt sound design principles so that new products are created in a more environmentally acceptable way and that their environmental impact throughout their lifecycles is minimised. This paper gives an overview of this new European legislation and discusses its impact on the electronics industry. The potential benefits of adopting such an approach are outlined.
With the ever increasing demands for high performance electronic devices there is a need for circuit board laminates that have enhanced properties when compared to conventional materials such as the widely used epoxide‐based FR4 laminates. Equipment manufacturers require boards with better mechanical stability and improved electrical characteristics. At the same time, new environmental legislation is set to drive electronics assembly temperatures much higher as manufacturers start to use lead‐free soldering processes. The legislation is also raising questions about the long‐term viability of brominated resins as the basis for imparting flame retardancy to laminates. Fortunately, laminate manufacturers have responded to these challenges by developing and introducing a wide range of new laminates that address these issues. This paper describes some of these challenges and gives an introduction to the new high performance laminates that are finding increasing use. It also highlights the need for chemical processes used in the manufacture of interconnects with laminates to be specifically optimised for the chosen substrate material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.