This study compares the short-term economic feasibility of six conversion pathways for renewable jet fuel (RJF) production. The assessment combines (i) a harmonized techno-economic analysis of conversion pathways expected to be certifi ed for use in commercial aviation by 2020, (ii) a pioneer plant analysis taking into account technological immaturity, and (iii) a quantifi ed assessment of the merits of co-producing RJF alongside existing European supply chains in the pulp, wheat ethanol, and beet sugar industries. None of the pathways assessed are able to reach price parity with petroleum-derived jet fuel in the short term. The pioneer plant analysis suggests that the hydroprocessed esters and fatty acids (HEFA) pathway is currently the best option; the technology achieves the lowest minimum fuel selling price (MFSP) of 29.3 € GJ -1 (1289 € t -1 ) and the technology is deployed on commercial scale already. In the short term, n t h plant analysis shows hydrothermal liquefaction (HTL) and pyrolysis emerging as promising alternatives, yielding MFSPs of 21.4 € GJ -1 (939 € t -1 ) and 30.2 € GJ -1 (1326 € t -1 ), respectively. The pioneer plant analysis shows considerable MFSP increases for producing drop-in fuels using HTL and pyrolysis as both technologies are relatively immature. Hence, further RD&D efforts into these pathways are recommended. Co-production strategies decrease the MFSP by 4-8% compared to greenfi eld production. Integration of process units and material and energy fl ows is expected to lead to further cost reductions. As such, co-production can be a particularly useful strategy to progress emerging technologies to commercial scale.
This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to biodiesel and the associated GHG emissions are also studied. This study follows the methodology suggested by the Dutch Commission on Sustainable Biomass (Cramer Commission). The results demonstrate that land use change is the most decisive factor in overall GHG emissions and that palm oil energy chains based on land that was previously natural rainforest or peatland have such large emissions that they cannot meet the 50-70% GHG emission reduction target set by the Cramer Commission. However, if CPO production takes place on degraded land, management of CPO production is improved, or if the by-product PFAD is used for electricity production, the emission reduction criteria can be met, and palm-oil-based electricity can be considered sustainable from a GHG emission point of view. Even though the biodiesel base case on logged-over forest meets the Cramer Commission's emission reduction target for biofuels of 30%, other cases, such as oil palm plantations on degraded land and improved management, can achieve emissions reductions of more than 150%, turning oil palm plantations into carbon sinks. In order for bioenergy to be sustainably produced from palm oil and its derivatives, degraded land should be used for palm oil production and management should be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.