BACKGROUND AND PURPOSE
Hippocampus volumetry is a useful surrogate marker for the diagnosis of Alzheimer disease, but it seems insufficiently sensitive for the aMCI stage. We postulated that some hippocampus subfields are specifically atrophic in aMCI and that measuring hippocampus subfield volumes will improve sensitivity of MR imaging to detect aMCI.
MATERIALS AND METHODS
We evaluated episodic memory and hippocampus subfield volume in 15 patients with aMCI and 15 matched controls. After segmentation of the whole hippocampus from clinical MR imaging, we applied a new computational method allowing fully automated segmentation of the hippocampus subfields. This method used a Bayesian modeling approach to infer segmentations from the imaging data.
RESULTS
In comparison with controls, subiculum and CA2–3 were significantly atrophic in patients with aMCI, whereas total hippocampus volume and other subfields were not. Total hippocampus volume in controls was age-related, whereas episodic memory was the main explanatory variable for both the total hippocampus volume and the subfields that were atrophic in patients with aMCI. Segmenting subfields increases sensitivity to diagnose aMCI from 40% to 73%.
CONCLUSIONS
Measuring CA2–3 and subiculum volumes allows a better detection of aMCI.
BACKGROUND AND PURPOSE:This study aimed to investigate brain maturation along gestational age with diffusion tensor imaging in healthy preterm and term neonates. Therefore, a voxel-based study of fractional anisotropy (FA) and mean diffusivity (D av ) was performed to reveal the brain regions experiencing microstructural changes with age. With tractography, the authors intended to identify which fiber tracts were included in these significant voxels.
Attention Deficit/Hyperactivity Disorder (ADHD) is a pervasive neurodevelopmental disorder characterized by 3 clusters of age-inappropriate cardinal symptoms: inattention, hyperactivity and impulsivity. These clinical/behavioural symptoms are assumed to result from disturbances within brain systems supporting executive functions including working memory (WM), which refers to the ability to transiently store and flexibly manipulate task-relevant information. Ongoing or past medications, co-morbidity and differences in task performance are potential, independent confounds in assessing the integrity of cerebral patterns in ADHD. In the present study, we recorded WM-related cerebral activity during a memory updating N-back task using functional Magnetic Resonance Imaging (fMRI) in control children and never medicated, prepubescent children with ADHD but without comorbid symptoms. Despite similar updating performance than controls, children with ADHD exhibited decreased, below baseline WM-related activation levels in a widespread cortico-subcortical network encompassing bilateral occipital and inferior parietal areas, caudate nucleus, cerebellum and functionally connected brainstem nuclei. Distinctive functional connectivity patterns were also found in the ADHD in these regions, with a tighter coupling in the updating than in the control condition with a distributed WM-related cerebral network. Especially, cerebellum showed tighter coupling with activity in an area compatible with the brainstem red nucleus. These results in children with clinical core symptoms of ADHD but without comorbid affections and never treated with medication yield evidence for a core functional neuroanatomical network subtending WM-related processes in ADHD, which may participate to the pathophysiology and expression of clinical symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.