The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser [Phys. Plasmas 3, 2098 (1996) ] was characterized using imaging and spectroscopic instruments. The laser wavelength was 1/4 μm, and the beams were smoothed by induced spatial incoherence (ISI). The targets were thin foils of CH, aluminum, titanium, and cobalt and were irradiated by laser energies in the range 100–1500 J. A multilayer mirror microscope operating at an energy of 95 eV recorded images of the plasma with a spatial resolution of 2 μm. The variation of the 95 eV emission across the 800 μm focal spot was 1.3% rms. Using a curved crystal imager operating in the 1–2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 μm perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface. The absolute radiation flux was determined at 95 eV and in x-ray bandpasses covering the 1–8 keV region. The electron temperature inferred from the slope of the x-ray flux versus energy data in the 5–8 keV region was 900 eV for an incident laser energy of 200 J and an intensity of ≊1013 W/cm2.
At the frontier of plasma physics and technology are applications of laser-generated plasmas to laboratory simulations of astrophysical phenomena and to industrial processing. This article presents work at the Naval Research Laboratory in both of these areas. We show how laser plasmas are used to measure a blast wave corrugation overstability important in astrophysics. Detailed atomic physics calculations of radiative cooling within the blast front are used to develop a criterion of the existence of the overstability and are used to explain the experimental results. The criterion depends on quantities such as element abundances, densities, temperatures, and blast wave velocities-quantities which can be measured spectroscopically-and therefore used to infer whether astrophysical blast wave nonuniformities are the result of this instability. In other experiments, high-velocity jets are formed in the laboratory using miniature hollow cones. Jets produced by these cones are used to study the physics of jets occurring in supernovae and in star-forming accretion disks. In industrial semiconductor processing, annealing, that is, removing crystal damage and electrically activating the semiconductor, is a critical step. Industrial annealing techniques most often utilize heat generated by an oven, flash lamps, or a low-power laser. During such heating dopants within the semiconductor lattice diffuse and spread. This degrades the performance of circuits in which the individual circuit elements are very close to each other. We are developing an annealing technique in which shock or sound waves generated by a laser plasma are used to anneal the semiconductor. We have demonstrated that the method works over small areas and that it does not lead to significant dopant diffusion.
The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser was characterized using spectroscopic instruments. The targets were thin foils of aluminum and titanium and were irradiated by laser energies in the range 100–1500 J. Using a spherical-crystal imaging spectrometer operating in the 1–2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 μm in the direction perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.