X-ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nano-particles activated by X-rays. Hence,...
The development of effective photosensitizers is particularly attractive for photodynamic therapy of cancer. Three novel porphyrin photosensitizers functionalized with phosphinic groups were synthesized and their physicochemical, photophysical, and photobiological properties were collected. Phosphinic acid groups (R1R2POOH) attached to the porphyrin moiety (R1) contain different R2 substituents (methyl, isopropyl, phenyl in this study). The presence of phosphinic groups does not influence absorption and photophysical properties of the porphyrin units, including the O2(1Δg) productivity. In vitro studies show that these porphyrins accumulate in cancer cells, are inherently nontoxic, however, exhibit high phototoxicity upon irradiation with visible light with their phototoxic efficacy tuned by R2 substituents on the phosphorus centre. Thus, phosphinatophenylporphyrin with isopropyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake. We demonstrate that these porphyrins are attractive candidates for photodynamic applications since their photodynamic efficacy can be easily tuned by the R2 substituent.
Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.