Interconnect solutions for advanced technology nodes using PECVD techniques for low-k deposition require the use of porogen-based process with post deposition UV cure. By using two different UV cure lamps (A, B) in combination with different porogen loads, three different micro-porous low-k films are developed: Aurora ELK HM (k~2.5; porosity (P) ~25%), Aurora ELK A (k~2.3; P~34%) and Aurora ELK B (k~2.2; P~37%). Integrating these materials is complex and challenging. We discuss key factors that are instrumental to the extension of a metal hard mask (MHM)-based integration scheme to these 3 low-k films. Our findings: (I) for sub-100nm dimensions, patterning and low-k interactions affect the dynamic of organic residue formation and thereby impact electrical yield; (II) choosing the right ash, etch and clean sequence is mandatory to control plasma damage, profile, residues and corrosion on top of the MHM; (III) Cu reduction plasmas must be adjusted when porosity is increased to mitigate field damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.