In a recent paper, Fulgencio shows how Winnicott rejected the basic speculative concepts of Freud's metapsychology - Trieb, psychical apparatus and libido - and replaced them with non-speculative concepts that promoted a factual theorization. In this paper, the author examines some of Winnicott's concepts and attempts to demonstrate how, rather than replacing Freud's concepts, he provides a factual foundation for the metapsychology in the double dependence of the infant in care. Freud never actually disregards the necessity of early mothering but he takes it for granted. By differentiating between ego needs and id needs, ego-relatedness and id-relatedness, object-mother and environment-mother, Winnicott attempts to theorize what Freud takes for granted: the function of the holding environment as a framework for id-experiences and the function of object-presenting as a condition of reality-testing. Furthermore, by differentiating between pure male and pure female elements, he is also able to construct a highly speculative theorization in order to distinguish two basic principles: doing and being. Although the death drive is clearly rejected, this rejection follows from his theorization of double dependence. Consequently, the author suggests that Winnicott did not discard metapsychological concepts but theorized the conditions for using both these and the intrapsychic topography.
Abstract. We describe the invariants of plane quartic curves -nonhyperelliptic genus 3 curves in their canonical model -as determined by Dixmier and Ohno, with application to the classification of curves with given structure. In particular, we determine modular equations for the strata in the moduli space M3 of plane quartics which have at least seven hyperflexes, and obtain an computational characterization of curves in these strata.
1. Introduction. Soit C une courbe lisse projective de genre g ≥ 2.Une telle courbe possède un ensemble de points canoniques : ses points de Weierstrass. D'autre part, après avoir choisi un de ces points, on dispose d'un plongement de C dans sa jacobienne J, et la structure du groupe W = W C engendré par les points de Weierstrass dans la jacobienne ne dépend pas du point de Weierstrass choisi ; ce groupe est donc un invariant géométrique
Tous droits réservés pour tous pays.La reproduction ou représentation de cet article, notamment par photocopie, n'est autorisée que dans les limites des conditions générales d'utilisation du site ou, le cas échéant, des conditions générales de la licence souscrite par votre établissement. Toute autre reproduction ou représentation, en tout ou partie, sous quelque forme et de quelque manière que ce soit, est interdite sauf accord préalable et écrit de l'éditeur, en dehors des cas prévus par la législation en vigueur en France. Il est précisé que son stockage dans une base de données est également interdit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.