The aim of X-ray tomography is to reconstruct an unknown physical body from a collection of projection images. When the projection images are only available from a limited angle of view, the reconstruction problem is a severely ill-posed inverse problem. Statistical inversion allows stable solution of the limited-angle tomography problem by complementing the measurement data by a priori information. In this work, the unknown attenuation distribution inside the body is represented as a wavelet expansion, and a Besov space prior distribution together with positivity constraint is used. The wavelet expansion is thresholded before reconstruction to reduce the dimension of the computational problem. Feasibility of the method is demonstrated by numerical examples using in vitro data from mammography and dental radiology.
Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.
In sparse-angle X-ray tomography reconstruction, where only a small number of projection images are taken around the object, appropriate sinogram interpolation has a significant impact on image quality. A novel sinogram interpolation method is introduced for extreme sparse tomographic reconstruction where only nine measured projection images are available. The sinogram is interpolated by solving characteristics of the so-called warps, which can be considered as approximation sine waves in a limited region. The numerical evidence suggests that this approach gives superior results over standard interpolation methods when the tomographic data are extremely sparse and noisy.
A novel three-dimensional dental X-ray imaging method is introduced, based on hybrid data collected with a dental panoramic device. Such a device uses geometric movement of the X-ray source and detector around the head of a patient to produce a panoramic image, where all teeth are in sharp focus and details at a distance from the dental arc are blurred. A digital panoramic device is reprogrammed to collect two-dimensional projection radiographs. Two complementary types of data are measured from a region of interest: projection data with a limited angle of view, and a panoramic image. Tikhonov regularization is applied to these data in order to produce three-dimensional reconstructions. The algorithm is tested with simulated data and real-world in vitro measurements from a dry mandible. Reconstructions from limited-angle projection data alone do provide the dentist with threedimensional information useful for dental implant planning. Furthermore, adding panoramic data to the process improves the reconstruction precision in the direction of the dental arc. The presented imaging modality can be seen as a cost-effective alternative to a full-angle CT scanner.
The new VT method may be employed when tomographic examinations are required for dental clinical work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.