Ten infectious bursal disease virus (IBDV) field strains were isolated from 15 broiler flocks located in various parts of Asyut, Egypt. Seven strains were subjected to comparative sequencing and phylogenetic analyses to help provide optimal control program for protection against IBDV infection. Sequence analysis of a 530 bp hypervariable region in the VP2 gene revealed that the rate of identity and homology was around 95.6~99.1%. Sequence characterization revealed the 7 strains identified as vvIBDV with the four amino acids residues typical of vvIBDV (242I, 256I, 294I, 299S). The BURSA-VAC vaccine was the nearest vaccine in sequence similarity to the local examined IBDV strains followed by CEVACIBDL then Bursine plus and Nobilis Gumboro indicating its probable success in the face of incoming outbreaks when using these vaccines. Phylogenetic analysis revealed that the presence of three clusters for the examined strains and are grouped with reference very virulent IBDVs of European and Asian origin (Japanese and Hong Kong) strains suggesting the different ancestors of our isolates. The antigenic index showed a number of changes on the major and minor hydrophilic antigenic peaks of the virus surface structures indicating a new genetic evolution of the surface structure epitopes that may lead to vaccination failure and reemergence of the disease.
Avian coccidiosis remains one of the major parasitic diseases that threaten the global poultry industry. Since prevention is superior to treatment, this study focuses on eliminating the infection outside the host. To determine their effect on the viability of Eimeria tenella oocysts in vitro, allicin and alcoholic garlic extract, which are natural, less toxic, and inexpensive products, were compared to KOH 5% (chemical disinfectant) using an in vitro culture system. Three concentrations of allicin (45, 90, and 180 mg/mL) and alcoholic garlic extract (90, 180, and 360 mg/mL, were used. Subsequently, destructive and sporulation-inhibiting effects on Eimeria oocysts were detected using light and electron microscopy. Young chickens were infected with treated sporulated oocysts to determine their effect on infectivity. After 7 days pi, the percentage of excreted oocysts (oocyst shedding) was determined, and the chickens were slaughtered for histopathological examination of the cecal tissues. Under an electron microscope, allicin at a concentration of 180 mg/mL and alcoholic garlic extract at a concentration of 360 mg/mL demonstrate a high oocysticidal activity with severe destruction of the oocyst wall and the appearance of pores. In addition, both concentrations directly affected the infectivity of sporulated oocysts by reducing the shedding of oocysts and the pathological lesions of infected young chickens. We concluded that the ability of Allicin and alcoholic garlic extract to eliminate Eimeria oocysts makes them superior to chemical disinfectants as a disinfectant.
Background Over the past 10 years, inclusion body hepatitis outbreaks, essentially from commercial broiler flocks, have been detected in different geographic regions highlighting the wide distribution of FAdVs around the world resulting in serious economic losses due to increased mortalities as well as poor performance within poultry farms in Assiut province, Egypt. Thus, this study was achieved to detect fowl adenovirus in broiler chicken flocks in Assiut province, Egypt and to recognize the pathogenicity of the isolated virus. Results The phylogeny of the L1 loop of the hexon gene exposed that the isolated virus clustered and belonged to the reference strains serotype D FAdV. The isolated virus is closely related to inclusion body hepatitis (IBH) strains causing extensive economic losses. The pathogenicity study of the virus showed typical macroscopic lesions with 6% mortality; furthermore, histopathological inspection exhibited severe hepatitis and degenerative changes after 5d from infection in the immune system. Conclusion Results in this research support the primary pathogenicity and mortality caused by FADV serotype 2 (IBH) alone without immunosuppressive agents thus robust control measures should be implanted against FAdV to evade the serious economic losses in poultry farms.
Background Avian pathogenic Escherichia coli (APEC) are considered a growing health problem to both poultry and the public, particularly due to its multi-drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are a promising multi-benefit candidate. This study focused on boosting the antimicrobial effect of the chemically synthesized ZnO-NPs using Polyethylene glycol-6000 (PEG-6000) and evaluating their potential to recover the sensitivity of Florfenicol and Streptomycin-resistant APEC to these drugs in a concentration range of 0.1–0.4 mg/mL. Four samples of ZnO-NPs were formulated and tested microbiologically. Results The physicochemical characterization showed well-crystallized spherical in situ synthesized ZnO-NPs using PEG-6000 (surfactant) and ethanol (co-surfactant) of ∼19–67 nm particle size after coating with PEG-6000 molecules. These ZnO-NPs demonstrated a strong concentration-dependent antibacterial effect against multidrug-resistant APEC strains, with a minimum inhibitory concentration of 0.1 mg/mL, Combining PEG-6000 coated in situ synthesized ZnO-NPs and Florfenicol induced 60% high sensitivity (30 mm inhibitory-zone), 30% intermediate sensitivity, and 10% resistance against APEC strains. The combination with Streptomycin revealed 50% high sensitivity, 30% intermediate sensitivity, and 20% resistance with a 20 mm maximum zone of inhibition using agar well diffusion test. Conclusion In situ preparation of ZnO-NPs using PEG-6000 and ethanol followed by coating with PEG-6000 enhanced its antibacterial activity in minimum inhibitory concentration and regained the efficacy of Florfenicol and Streptomycin against APEC, referring to a non-antibiotic antimicrobial alternative and an effective combination regimen against multidrug-resistant APEC E. coli in veterinary medicine.
In this study 300 samples were taken from different layer farms in Egypt (El-Sharqia, Elmina, Assiut and Sohag) showing remarkable signs for fowl cholera and examined for detection of P. multocida. Isolation of P. multocida was from liver, lung and trachea. The targeted bacteria were isolated, identified and molecularly characterized. P. multocida were recovered from 8 cases (2.6%) and confirmed using phenotypic characterization. By multiplex PCR assay which considered a rapid diagnostic method for fowl Cholera confirmatory recognition regardless to serotypes, isolates were P. multocida serotype (A) at expected size; 1044 bp. Antimicrobial susceptibility test used to determine the minimal inhibitory concentration to all isolates resulted in high susceptibility to amoxicillin and doxycycline and with variable pattern of sensitivity to the other antibiotic. Studying pathogenicity of P.multocida capsular type A was carried out in Ross broiler chickens aged 21 days old through oropharyngeal inoculation (0.5 ml) brain heart infusion broth containing 2.93x10 8 CFU. Characteristic mild respiratory signs were observed within 48 h and persisted for 9 day with 8% mortality. Mild septicemic lesions comprising of white necrotic foci and pinpoint hemorrhages in the coronary fat of the heart, liver and sever inflammation in pancreas were observed. This study has documented the incidence of fowl cholera in broiler chickens to some extent mild to moderate degree of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.