One of the factors affecting the productivity of sunflower is poor management of soil service operations such as tillage depth. As choosing the depth of tillage helps in increasing the growth of the root system, which is reflected in the plant vegetative growth. Although the addition of animal manure can increase the activities of microorganisms in the soil and the soil contents of available nutrients, the effects on sunflowers were not tested under dry land conditions of Basrah province. Field experiment was carried out during the 2020 growing season, at two locations, to determine the effect of three tillage depths (10, 20 and 30 cm) and four organic manure levels (M0 = without manure, M1 = 6 t ha−1, M2 = 8 t ha−1, M3 = 10 t ha−1) on sunflower performance, seed yield and selected soil properties. Results showed that, the maximum vegetative parameters, yield component and yield were recorded at 30 and 20 cm tillage depth treatments at the both growing locations without significant differences between them compared to 10 cm tillage depth. Number of seeds head−1 was not influenced by tillage depth treatments over the two locations. Tillage depth of 30 cm significantly improved seed yield as compared to 10 cm tillage depth. The maximum seed yield recorded by 30 cm tillage depth. The application of organic manure had a significant effect on sunflower seed yield, biomass yield, head diameter, 500 seed weight, seeds head−1, leaf area, leaves plant−1, plant height and stem girth at the both growing locations.
Maize ( Zea mays L.) is an important grains cereal crop. Lots of farmers using tillage and mulching practices influence the final yield, to maintain up with the growing demand for food, fuel and feed. Field experiments were conducted to investigate the effects of tillage practices (i.e. conventional tillage CT, reduced tillage RT, deep tillage DT) and wheat straw mulching (i.e. no mulch and wheat straw mulch of 4, 8 and 12 Mg ha −1 , SM0, SM1, SM2 and SM3 respectively) on the growth, yield and yield components of maize and some of soil physical properties. The results showed that compared with RT, DT and CT decreased soil bulk density, as well as led to increase soil water content. Application of mulch treatments increased soil water content. DT and CT have been associated with greater plant height, yield components, grain and biomass yield than RT treatment. Plant height, yield components, grain and biomass yield as well as soil water content increased following mulching treatments. Mulching treatment of SM2 had the largest positive effects on maize yield. DT and CT that have potential to break the compacted zone in soil leading to a better soil environment and crop yield. The application of wheat straw mulch could be an efficient soil management practice for corn production in arid subtropical climate region.
In the subtropical semi-arid zones, sorghum Sorghum bicolor (L.) productivity is limited by numerous constraints. Relatively few studies have been conducted to measure the response of grain sorghum varieties to tillage and nitrogen. For sustainable crop production, selected tillage practice and fertilizer application are important. Field experiments were conducted at Al Qurna (QL), 74 km northwest Basrah province and Shatt al-Arab (SHL) and 17 km east Basrah province. A randomized complete block design, arranged in a split-split plot, was used with three replications. The tillage system was no tillage (NT), reduced tillage (RT), and conventional tillage (CT), while sorghum varieties were Inqadh, Rabih, and Cavire 2, and four levels of N fertilizer, viz., 0, 40, 80, and 120 kg ha−1. The objective of research was to evaluate two sorghum (Sorghum bicolor L.) varieties to tillage system and nitrogen (N) fertilizer. The application of tillage was shown to enhance the growth of sorghum as observed in the plant height, leaf area, number of grains panicle−1, 1000-grain weight, yield, biomass yield, and root dry matter. CT surpassed the other treatments for all studied traits. The highest value of plant height, number of grains panicle−1, grain yield, biomass yield, and root dry matter in the QL and SHL locations, respectively, were produced by Cavire 2. The plots fertilized with 120 kg N ha−1 maximize the values of plant height (132.33 cm in the SHL location), leaf area (3040.53 and 2751.47 cm2 in the QL and SHL location respectively), number of grains panicle−1 (1431.37 in the SHL location), 1000-grain weight (31.77 g in the QL location), biomass yield (15752.00 kg ha−1 in the SHL location), and root dry matter (22.42 and 20.75 g root cm−3 in the QL and SHL locations, respectively). Cavire 2 variety under CT with 80 kg N ha−1 in the QL location was the best (observed as the most promising) in terms of grain yield. Whereas Cavire 2 under CT showed best performance with 120 kg N ha−1 in the QL location in terms of biomass yield character.
Two separated sets of laboratory experiments were studied for barley seeds treating using a microwave and ultraviolet irradiation. In the microwave set, seeds have been exposed to the microwave radiations (2450 MHz) for 0 sec (control, MW0), 5 sec (MW1), 10 sec (MW2), and 20 sec (MW3), while in the ultraviolet set, seeds have exposed to UV-C radiation (254 nm) for 0 min (control, UV0), 30 min (UV1), 60 min (UV2), and 120 min (UV3). The aim is to study the influences of different exposure time from MW and UV-C radiation on some barley seed germination parameters and to choose the fitting model Logistic (Log) or Gompertz (Gom) suited to cumulative germination curves under the influence of these factors. The results of this study showed higher seed germination percentage (93.33%) at the exposure time MW2 and UV3 (88.33%), whereas the lowest value (66.67%) recorded in MW3 treatment. The results also appeared the best values at MW2 in SG, 6.24 seed day-1; in GRI, 31.19% day-1, and in GI, 87.67, as well as at UV2 in MGT, 3.32 day. The higher value of asymptotic germination barley seeds was found with Gom function (97.24%, and 88.71%) at MW2 and UV3, respectively. Besides, Gom functions at MW1 and UV2 give the highest maximum germination rates at 2,08 and 2.51% h-1, respectively. The results of the Log equation illustrated the highest value of germination percentage of the inflection point has recorded in 43.85 and 47.37 % on UV3 and MW2 treatments, respectively. For the fitting growth curve, the results have proven that the Gom function was shown the lowest values in MSE in all MW and UV exposure times, as compared with the Log function. So, the results of the Gom function were more fit for the growth curve for MW and UV treatments, as compared with the Log function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.