NAD(P)H quinone oxidoreductase‐1 (NQO1) is a homodimeric protein that acts as a detoxifying enzyme or as a chaperone protein. Dicourmarol interacts with NQO1 at the NAD(P)H binding site and can both inhibit enzyme activity and modulate the interaction of NQO1 with other proteins. We show that the binding of dicoumarol and related compounds to NQO1 generates negative cooperativity between the monomers. This does not occur in the presence of the reducing cofactor, NAD(P)H, alone. Alteration of Gly150 (but not Gly149 or Gly174) abolished the dicoumarol‐induced negative cooperativity. Analysis of the dynamics of NQO1 with the Gaussian network model indicates a high degree of collective motion by monomers and domains within NQO1. Ligand binding is predicted to alter NQO1 dynamics both proximal to the ligand binding site and remotely, close to the second binding site. Thus, drug‐induced modulation of protein motion might contribute to the biological effects of putative inhibitors of NQO1.
HighlightsSNP rs1143684 results in either a Phe or Leu at position 47 in human NQO2.NQO2-L47 has a slightly lower kcat/Km; it also has a lower Ki,app with resveratrol.NQO2-L47 is more unstable to proteolysis and thermal denaturation.NQO2-F47 (but not NQO2-L47) shows negative cooperativity towards resveratrol.NQO2-L47 exists as multiple conformers in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.