Abnormal activation the WNT/β-catenin signaling pathway has been associated with ovarian carcinomas, but a specific WNT ligand and pertinent downstream mechanisms are not fully understood. In this study, we found abundant WNT7A in the epithelium of serous ovarian carcinomas, but not detected in borderline and benign tumors, normal ovary or endometrioid carcinomas. To characterize the role of WNT7A in ovarian tumor growth and progression, nude mice were injected either intraperitoneally (i.p.) or subcutaneously (s.c.) with WNT7A knocked down SKOV3.ip1 and overexpressed SKOV3 cells. In the i.p. group, mice receiving SKOV3.ip1 cells with reduced WNT7A expression developed significantly fewer tumor lesions. Gross and histological examination revealed greatly reduced invasion of WNT7A knockdown cells into intestinal mesentery and serosa compared to the control cells. Tumor growth was regulated by loss or overexpression of WNT7A in mice receiving s.c. injection as well. In vitro analysis of cell function revealed that cell proliferation, adhesion, and invasion were regulated by WNT7A. The activity of the TCF/LEF reporter was stimulated by overexpression of WNT7A in ovarian cancer cells. Co-transfection with WNT7A and FZD5 receptor further increased activity, and this effect was inhibited by co-transfection with SFRP2, or dominant-negative TCF4. Overexpression of WNT7A stimulated MMP7 promoter, and mutation of TCF binding sites in MMP7 promoter confirmed that activation of MMP7 promoter by WNT7A was mediated by β-catenin/TCF signaling. Collectively, these results suggest that re-expression of WNT7A during malignant transformation of ovarian epithelial cells plays a critical role in ovarian cancer progression mediated by WNT/β-catenin signaling pathway.
Literature review suggests a close relationship between estrogen and apolipoprotein E (ApoE) in the central nervous system. Epidemiology studies show that estrogen replacement therapy (ERT) decreases the morbidity from several chronic neurological diseases. Alleles of ApoE modify the risk for and progression of the same diseases. ApoE levels in the rodent brain vary during the estrous cycle and increase after 17beta-estradiol administration. Both estradiol and ApoE3, the most common isoform of human ApoE, increase the extent of neurite outgrowth in culture. Combined, these observations suggest a common mechanism whereby estrogen may increase ApoE levels to facilitate neurite growth. We tested this hypothesis by characterizing the effects of estradiol and ApoE isoforms on neurite outgrowth in cultured adult mouse cortical neurons. Estradiol increased ApoE levels and neurite outgrowth. ApoE2 increased neurite length more so than ApoE3 in the presence of estradiol. Estradiol had no effect on neurite outgrowth from mice lacking the ApoE gene or when only ApoE4, the isoform of ApoE that is associated with increased risk of neurological disease, was exogenously supplied. Cultures from mice transgenic for human ApoE3 or ApoE4 showed the same isoform-specific effect. Neuronal internalization of recombinant human ApoE3 was greater than ApoE4, and ApoE3 was more effective than ApoE4 in facilitating neuronal uptake of a fatty acid. We conclude that estradiol facilitates neurite growth through an ApoE-dependent mechanism. The effects of ERT on chronic neurological diseases may vary with ApoE genotype. The clinical use of ERT may require ApoE genotyping for optimal efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.