A 3.8-kb fragment of chromosomal DNA of Geobacillus stearothermophilus V cloned in pSP72 (p1VH) confers resistance to potassium tellurite (K(2)TeO(3)) and to potassium tellurate (K(2)TeO(4)) when the encoded genes are expressed in Escherichia coli K-12. The nt sequence of the cloned fragment predicts three ORFs of 780, 399, and 600 bp, whose encoded protein products exhibit about 80% similarity with the SUMT methyltransferase and the BtuR protein of Bacillus megaterium, and with the UbiE methyltransferase of Bacillus anthracis A2012, respectively. In addition, E. coli/p1VH cells evolved dimethyl telluride, which was released into the headspace gas above liquid cultures when amended with K(2)TeO(3) or with K(2)TeO(4). After 48 h of growth in the presence of these compounds, a protein of about 25 kDa was found at a significantly higher level when crude extracts were analyzed by SDS-PAGE. The N-terminal amino acid (aa) sequence of this protein, obtained by Edman degradation, matched the deduced aa sequence predicted by the G. stearothermophilus V ubiE gene. This gene was amplified by PCR, subcloned in pET21b, and transformed into E. coli JM109(DE3). Interestingly, DMTe evolution occurred when these modified cells were grown in K(2)TeO(4) - but not in K(2)TeO(3) - amended media. These results may be indicative that the two Te oxyanions could be detoxified in the cell by different metabolic pathways.
Nucleosomes prepared from human placental nuclei and Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyl transferase EC.2.7.7.6) form stable initiation complexes. This property is utilized as a probe of nucleosome structure. RNA polymerase initiation has been studied on purified nucleosomes, nucleosome cores, and nucleosomal DNA. The affinity of E. coli RNA polymerase for both nucleosome cores and monomers was 5-6 fold less than found for nucleosomal DNA. No difference in apparent initiation Km was found between cores and mononucleosomes. This suggests that initiation does not preferentially occur on the DNA tails of nucleosomes. Once initiated and allowed to form nascent RNA, these complexes are very stable to ionic strength changes. Under conditions in which free enzyme is inactivated with rifampicin, the enzyme in the complex retains activity as demonstrated by its ability to transcribe and reinitiate on both nucleosomes and free DNA. These complexes can be well resolved from free nucleosomes on preparative polyacrylamide gels and both can be eluted from gels for analysis of proteins and DNA sequence complexity. Studies using (125I) labelled nucleosomes show that histones are retained in the initiation complex, and are not dissociated by the enzyme during initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.