Engineered nanoparticles are increasingly being considered for use as biosensors, imaging agents and drug delivery vehicles. Their versatility in design and applications make them an attractive proposition for new biological and biomedical approaches. Despite the remarkable speed of development in nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and the presentation of the proteins on their surface could lead to a different in vivo response than an uncoated particle. Here, in addition to protein adsorption, we are going to introduce concept of cell "vision", which would be recognized as another crucial factor that should be considered for the safe design of any type of nanoparticles that will be used in specific biomedical applications. The impact of exactly the same nanoparticles on various cells is significantly different and could not be assumed for other cells; the possible mechanisms that justify this cellular response relate to the numerous detoxification strategies that any particular cell can utilize in response to nanoparticles. The uptake and defence mechanism could be considerably different according to the cell type. Thus, what the cell "sees", when it is faced with nanoparticles, is most likely dependent on the cell type.
MicroRNAs are small non-coding RNAs that are implicated in various biological processes. Hsa-miR-6165 (miR-6165), located in the p75NTR gene, is known to induce apoptosis in human cell lines, but its mechanism of action is not fully understood yet. Here, we predicted the insulin-like growth factor 1 receptor (IGF-1R) gene as a bona fide target for miR-6165. The overexpression of miR-6165 in SW480 cells resulted in significant downregulation of IGF-1R expression as detected by real time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Also, it resulted in reduced transcript levels of AKT2, AKT3, PI3KR3, PI3KR5, CCND1, c-MYC and P21 genes detected by RT-qPCR analysis. In addition, a direct interaction between miR-6165 and a 3′UTR sequence of the IGF-1R gene was verified through a dual luciferase assay. Furthermore, miR-6165 and IGF-1R showed opposite patterns of expression during the neural differentiation process of NT2 cells. Annexin V analysis and MTT assay showed that miR-6165 overexpression was followed by increased apoptosis and reduced the viability rate of SW480 cells. Moreover, a lower expression level of miR-6165 was detected in high-grade colorectal tumors compared with low-grade tumors. Taken together, the results of our study suggest a tumor suppressive role of miR-6165 in colorectal cancer, which seems to take place by regulating IGF-1R gene expression.
MicroRNAs are small non-coding RNAs that posttranscriptionally regulate mRNA expression. hsa-miR-6165 which was previously discovered in our group is located in the forth intron of p75NTR gene and its function is still under investigation. As P75NTR has diverse cellular functions, some of the complexity of its function could be attributed to the internally located microRNA. Our analysis revealed that treatment of HCT116 cells with 5-azacytidine promoted differential expression of hsa-miR-6165 from its host gene which is consistent with the bioinformatic prediction of an independent promoter for hsa-miR-6165. In addition, hsa-miR-6165 promoter is capable of driving GFP reporter gene in HeLa cells. The putative target gene expression level which was detected using RT-qPCR is inversely proportional to the expression level of hsa-miR-6165 during NT2 cell neural differentiation. Furthermore, hsa-miR-6165 overexpression resulted in significant downregulation of ABLIM-1, PVRL1, and PDK1 target genes, while it attenuates NT2 neural differentiation. Hsa-miR-6165 overexpression in SW480 cells also resulted in significant downregulation of PKD1, DAGLA, and PLXNA2 putative target genes, while it increases the sub-G1 cell population of SW480 and HEK293T cells as detected by flow cytometry. Overall, in this study, we report an independent promoter for hsa-miR-6165 which is active in HeLa cells. Additionally, hsa-miR-6165 targets ABLIM-1, PVRL1, PKD1, PLXNA2, and PDK1 genes, and unlike in HEK293T and SW480 cells, hsa-miR-6165 overexpression does not affect HeLa cells while its downregulation reduces sub-G1 cell population. Our results validate that hsa-miR-6165 affects the cell cycle progression and could increase apoptosis in human cell lines.
Many metropolises seek to relieve traffic congestions and reduce vehicle accidents by implementing Intelligent Traffic Information Systems. These systems manage continuous communication between vehicles, various roadside IoT devices and a central server in real time for traffic control and vehicle navigations. Short response time is critical to the success of these time-sensitive systems. For a small area, a system with centralized server architecture may just work fine. For a larger area with more IoT devices and traffic, however, the system may experience excessive response time as a result of increased network distance and constrained server processing capacity. We propose a decentralized server system to properly manage and reduce service response time. We have also developed a binary nonlinear constrained programming model with Genetic Algorithm for a heuristic solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.