BackgroundSuperparamagnetic iron oxide nanoparticles (SPIONs) are the most commonly used negative MRI contrast agent which affect the transverse (T2) relaxation time. The aim of the present study was to investigate the impact of various polymeric coatings on the performance of magnetite nanoparticles as MRI contrast agents.MethodsFerrofluids based on magnetite (Fe3O4) nanoparticles (SPIONs) were synthesized via chemical co-precipitation method and coated with different biocompatible polymer coatings including mPEG-PCL, chitosan and dextran.ResultsThe bonding status of different polymers on the surface of the magnetite nanoparticles was confirmed by the Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The vibrating sample magnetometer (VSM) analysis confirmed the superparamagnetic behavior of all synthesized nanoparticles. The field–emission scanning electron microscopy (FE-SEM) indicated the formation of quasi-spherical nanostructures with the final average particle size of 12–55 nm depending on the type of polymer coating, and X-ray diffraction (XRD) determined inverse spinel structure of magnetite nanoparticles. The ferrofluids demonstrated sufficient colloidal stability in deionized water with the zeta potentials of −24.2, −16.9, +31.6 and −21 mV for the naked SPIONs, and for dextran, chitosan and mPEG-PCL coated SPIONs, respectively. Finally, the magnetic relaxivities of water based ferrofluids were measured on a 1.5T clinical MRI instrument. The r2/r1 value was calculated to be 17.21, 19.42 and 20.71 for the dextran, chitosan and mPEG-PCL coated SPIONs, respectively.ConclusionsThe findings demonstrated that the value of r2/r1 ratio of mPEG-PCL modified SPIONs is higher than that of some commercial contrast agents. Therefore, it can be considered as a promising candidate for T2 MRI contrast agent.
Introduction: Expansion of efficacious theranostic systems is of pivotal significance for medicine and human healthcare. Magnetic nanoparticles (MNPs) are known as drug delivery system and magnetic resonance imaging (MRI) contrast agent. MNPs as drug carriers have attracted significant attention because of the delivery of drugs loaded onto MNPs to solid tumors, maintaining them in the target site by an external electromagnetic field, and subsequently releasing drugs in a controlled manner. On the other hand, it is believed that MNPs possess high potential as MRI contrast agents. The aim of this work was to payload curcumin into dextran coated MNPs and investigate their potential as theranostic systems for controlled drug delivery and MRI imaging. Methods: MNPs were synthesized as a core and coated with dextran as polymeric shell to provide steric stabilization. Curcumin as anticancer drug was selected to be loaded into NPs. To characterize the synthesized NPs, various techniques (e.g., DLS, FESEM, FT-IR, XRD, and VSM) were utilized. In vitro drug release of curcumin was evaluated at 37˚C at the pH value of 5.4 and 7.4.The feasibility of employment of dextran coated MNPs as MRI contrast agents were also studied. Results: Formulations prepared from dextran coated MNPs showed high loading (13%) and encapsulation efficiency (95%). In vitro release study performed in the phosphate-buffered saline (PBS, pH= 7.4, 5.4) revealed that the dextran coated MNPs possess sustained release behavior at least for 4 days with the high extent of drug release in acidic media. Vibrating sample magnetometer (VSM) analysis proved the superparamagnetic properties of the dextran coated MNPs with relatively high-magnetization value indicating that they were sufficiently sensitive to external magnetic fields as magnetic drug carriers. Furthermore, dextran coated MNPs exhibited high potential as T2 contrast agents for MRI. Conclusion: Based on our findings, we propose the dextran coated MNPs as promising nanosystem for the delivery of various drugs such as curcumin and MRI contrast agent.
Lipid-based drug delivery systems are considered as promising vehicles for hydrophobic drug compounds. Lipid distribution within the droplet can affect drug loading capacity in these carriers. However, it is extremely challenging to determine the nanostructure within these carriers through the implementation of the direct experimental methods due to the ultrafine size. Therefore, coarse grained molecular dynamics (MD) simulation was utilized to model different kinds of lipid-based nanoparticles of the diameter about 12 nm including solid lipid nanoparticles (SLN), nanoemulsion (NE), and nanostructured lipid carriers (NLC), and the organization of the lipids within the carriers was explored. The aforementioned nanoparticles consisted of stearic acid, oleic acid as lipids, and sodium dodecyl sulfate (SDS) as a surfactant in water medium. Furthermore, the impact of solid to liquid mass ratio on the lipid distribution within the lipid matrix was investigated regarding the NLC simulations. In the equilibrium state, we observed the vesicle-like structure for all the investigated systems in which the hydrophilic moieties of the lipids and surfactant organized a semi-bilayer fold into the droplet and the hydrophobic tails accumulated among them. It is worth mentioning although SDS as a harsh surfactant, which is a special case, was expected to be present in the surface of the droplet, it penetrated into the lipids. Additionally, our results showed remarkable entrapped water beads inside the droplet in the form of one or more cavities along the internal layer of the head groups which was surrounded by lipid head groups. It was also reported that in the building structure of the nanoemulsion and SLN, in the central parts of the droplets, lipids were denser than the case of NLCs. Moreover, no crystallization occurred within the lipid-based carriers. Finally, the results indicated that, in the case of NLC simulations, the lipid distribution within the lipid matrix was insensitive to the mass fraction of solid to liquid lipids.
Thermal transport behavior in silicene nanotubes has become more important due to the application of these promising nanostructures in the engineering of next-generation nanoelectronic devices. We apply non-equilibrium molecular dynamics (NEMD) simulations to study the thermal conductivity of silicene nanotubes with different lengths and diameters. We further explore the effects of grain boundary, strain, vacancy defect, and temperature in the range of 300-700 K on the thermal conductivity. Our results indicate that the thermal conductivity varies with the length approximately in the range of 24-34 W/m.K but exhibits insensitivity to the diameter and chirality. Besides, silicene nanotubes consisting of the grain boundary exhibit nearly 30% lower thermal conductivity compared with pristine ones. We discuss the underlying mechanism for the conductivity suppression of the system consisting of the grain boundary by calculating the phonon power spectral density. We find that by increasing the defect concentration and temperature, the thermal conductivity of the system decreases desirably. Moreover, for strained nanotubes, we observe unexpected changes in the thermal conductivity, so that the conductivity first increases significantly with tensile strain and then starts to decrease. The maximum thermal conductivity for the armchair and zigzag edge tubes appears at the strains about 3% and 5%, respectively, which is about 28% more than that of the unstrained structure.
During the fabrication process of large scale silicene, through common chemical vapor deposition (CVD) technique, polycrystalline films are quite likely to be produced, and the existence of Kapitza thermal resistance along grain boundaries could result in substantial changes of their thermal properties. In the present study, the thermal transport along polycrystalline silicene was evaluated by performing a multiscale method. Non-equilibrium molecular dynamics simulations (NEMD) was carried out to assess the interfacial thermal resistance of various constructed grain boundaries in silicene. The effects of tensile strain and the mean temperature on the interfacial thermal resistance were also examined. In the following stage, the effective thermal conductivity of polycrystalline silicene was investigated considering the effects of grain size and tensile strain. Our results indicate that the average values of Kapitza conductance at grain boundaries at room temperature were estimated to be nearly 2.56 × 10 9 W/m 2 K and 2.46 × 10 9 W/m 2 K through utilizing Tersoff and Stillinger-Weber interatomic potentials respectively. Also, in spite of the mean temperature, whose increment does not change Kapitza resistance, the interfacial thermal resistance could be controlled by applying strain. Furthermore, it was found that by tuning the grain size of polycrystalline silicene, its thermal conductivity could be modulated up to one order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.