Genome-wide association studies have identified dozens of loci that alter the risk to develop Alzheimer’s disease. However, with the exception of the APOE-ε4 allele, most variants bear only little individual effect and have, therefore, limited diagnostic and prognostic value. Polygenic risk scores aim to collate the disease risk distributed across the genome in a single score. Recent works have demonstrated that polygenic risk scores designed for Alzheimer’s disease are predictive of clinical diagnosis, pathology confirmed diagnosis and changes in imaging biomarkers. Methodological innovations in polygenic risk modelling include the polygenic hazard score, which derives effect estimates for individual single nucleotide polymorphisms from survival analysis, and methods that account for linkage disequilibrium between genomic loci. In this work, using data from the Alzheimer’s disease neuroimaging initiative, we compared different approaches to quantify polygenic disease burden for Alzheimer’s disease and their association (beyond the APOE locus) with a broad range of Alzheimer’s disease-related traits: cross-sectional CSF biomarker levels, cross-sectional cortical amyloid burden, clinical diagnosis, clinical progression, longitudinal loss of grey matter and longitudinal decline in cognitive function. We found that polygenic scores were associated beyond APOE with clinical diagnosis, CSF-tau levels and, to a minor degree, with progressive atrophy. However, for many other tested traits such as clinical disease progression, CSF amyloid, cognitive decline and cortical amyloid load, the additional effects of polygenic burden beyond APOE were of minor nature. Overall, polygenic risk scores and the polygenic hazard score performed equally and given the ease with which polygenic risk scores can be derived; they constitute the more practical choice in comparison with polygenic hazard scores. Furthermore, our results demonstrate that incomplete adjustment for the APOE locus, i.e. only adjusting for APOE-ε4 carrier status, can lead to overestimated effects of polygenic scores due to APOE-ε4 homozygous participants. Lastly, on many of the tested traits, the major driving factor remained the APOE locus, with the exception of quantitative CSF-tau and p-tau measures.
Diffusion tensor imaging (DTI) is a promising imaging technique that provides insight into white matter microstructure integrity and it has greatly helped identifying white matter regions affected by Alzheimer's disease (AD) in its early stages. DTI can therefore be a valuable source of information when designing machine-learning strategies to discriminate between healthy control (HC) subjects, AD patients and subjects with mild cognitive impairment (MCI). Nonetheless, several studies have reported so far conflicting results, especially because of the adoption of biased feature selection strategies. In this paper we firstly analyzed DTI scans of 150 subjects from the Alzheimer's disease neuroimaging initiative (ADNI) database. We measured a significant effect of the feature selection bias on the classification performance (p-value < 0.01), leading to overoptimistic results (10% up to 30% relative increase in AUC). We observed that this effect is manifest regardless of the choice of diffusion index, specifically fractional anisotropy and mean diffusivity. Secondly, we performed a test on an independent mixed cohort consisting of 119 ADNI scans; thus, we evaluated the informative content provided by DTI measurements for AD classification. Classification performances and biological insight, concerning brain regions related to the disease, provided by cross-validation analysis were both confirmed on the independent test.
Genome-Wide Association Studies of imaging-derived biomarkers in Alzheimer’s disease have focused on phenotypes derived from single imaging modalities. Scelsi et al. report the first use of a multimodal phenotype, derived through disease progression modelling, and identify a novel variant that is protective against conversion from healthy ageing to Alzheimer’s disease.
Background Semantic variant of primary progressive aphasia (svPPA) is a subtype of frontotemporal dementia characterized by asymmetric temporal atrophy. Methods We investigated the pattern of medial temporal lobe atrophy in 24 svPPA patients compared to 72 controls using novel approaches to segment the hippocampal and amygdalar subregions on MRIs. Based on semantic knowledge scores, we split the svPPA group into 3 subgroups of early, middle and late disease stage. Results Early stage: all left amygdalar and hippocampal subregions (except the tail) were affected in svPPA (21–35% smaller than controls), together with the following amygdalar nuclei in the right hemisphere: lateral, accessory basal and superficial (15–23%). On the right, only the temporal pole was affected among the cortical regions. Middle stage: the left hippocampal tail became affected (28%), together with the other amygdalar nuclei (22–26%), and CA4 (15%) on the right, with orbitofrontal cortex and subcortical structures involvement on the left, and more posterior temporal lobe on the right. Late stage: the remaining right hippocampal regions (except the tail) (19–24%) became affected, with more posterior left cortical and right extra-temporal anterior cortical involvement. Conclusions With advanced subregions segmentation, it is possible to detect early involvement of the right medial temporal lobe in svPPA that is not detectable by measuring the amygdala or hippocampus as a whole. Electronic supplementary material The online version of this article (10.1186/s13195-019-0489-9) contains supplementary material, which is available to authorized users.
Background:Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder, with a strong genetic component. Previous research has shown that medial temporal lobe atrophy is a common feature of FTD. However, no study has so far investigated the differential vulnerability of the hippocampal subfields in FTD.Objectives:We aimed to investigate hippocampal subfield volumes in genetic FTD.Methods:We in6/2/2018vestigated hippocampal subfield volumes in a cohort of 75 patients with genetic FTD (age: mean (standard deviation) 59.3 (7.7) years; disease duration: 5.1 (3.4) years; 29 with MAPT, 28 with C9orf72, and 18 with GRN mutations) compared with 97 age-matched controls (age: 62.1 (11.1) years). We performed a segmentation of their volumetric T1-weighted MRI scans to extract hippocampal subfields volumes. Left and right volumes were summed and corrected for total intracranial volumes.Results:All three groups had smaller hippocampi than controls. The MAPT group had the most atrophic hippocampi, with the subfields showing the largest difference from controls being CA1-4 (24–27%, p < 0.0005). For C9orf72, the CA4, CA1, and dentate gyrus regions (8–11%, p < 0.0005), and for GRN the presubiculum and subiculum (10–14%, p < 0.0005) showed the largest differences from controls.Conclusions:The hippocampus was affected in all mutation types but a different pattern of subfield involvement was found in the three genetic groups, consistent with differential cortical-subcortical network vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.