This paper proposes a group membership verification protocol preventing the curious but honest server from reconstructing the enrolled signatures and inferring the identity of querying clients. The protocol quantizes the signatures into discrete embeddings, making reconstruction difficult. It also aggregates multiple embeddings into representative values, impeding identification. Theoretical and experimental results show the trade-off between the security and the error rates.
When convoking privacy, group membership verification checks if a biometric trait corresponds to one member of a group without revealing the identity of that member. Similarly, group membership identification states which group the individual belongs to, without knowing his/her identity. A recent contribution provides privacy and security for group membership protocols through the joint use of two mechanisms: quantizing biometric templates into discrete embeddings, and aggregating several templates into one group representation.This paper significantly improves that contribution because it jointly learns how to embed and aggregate instead of imposing fixed and hard coded rules. This is demonstrated by exposing the mathematical underpinnings of the learning stage before showing the improvements through an extensive series of experiments targeting face recognition.Overall, experiments show that learning yields an excellent trade-off between security / privacy and the verification / identification performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.