second model, the two main conditions were parametrically modulated by the two categories, respectively (SOM, S5.1). The activation of the precuneus was higher for hard dominance-solvable games than for easy ones ( Fig. 4A and table S10). The activation of the insula was higher for the highly focal coordination games than for less focal ones ( Fig. 4B and table S11). Previous studies also found that precuneus activity increased when the number of planned moves increased (40, 41). The higher demand for memory-related imagery and memory retrieval may explain the greater precuneus activation in hard dominance-solvable games. In highly focal coordination games, the participants may have felt quite strongly that the pool students must notice the same salient feature. This may explain why insula activation correlates with NCI.Participants might have disagreed about which games were difficult. We built a third model to investigate whether the frontoparietal activation correlates with how hard a dominance-solvable game is and whether the activation in insula and ACC correlates with how easy a coordination game is. Here, the two main conditions were parametrically modulated by each participant's probability of obtaining a reward in each game (SOM, S2.2 and S5.2). We found a negative correlation between the activation of the precuneus and the participant's probability of obtaining a reward in dominance-solvable games ( Fig. 4C and table S12), which suggests that dominance-solvable games that yielded lower payoffs presented harder mental challenges. In a previous study on working memory, precuneus activity positively correlated with response times, a measure of mental effort (24). Both findings are consistent with the interpretation that subjective measures reflecting harder tasks (higher efforts) correlate with activation in precuneus. A positive correlation between insula activation and the participant's probability of obtaining a reward again suggests that coordination games with a highly salient feature strongly activated the "gut feeling" reported by many participants (Fig. 4D and table S13). A previous study found that the subjective rating of "chills intensity" in music correlates with activation of insula (42). Both findings are consistent with the interpretation that the subjective intensity of how salient a stimulus is correlates with activation in insula.As mentioned, choices were made significantly faster in coordination games than in dominancesolvable games. The results of the second and third models provide additional support for the idea that intuitive and deliberative mental processes have quite different properties. The "slow and effortful" process was more heavily taxed when the dominance-solvable games were harder. The "fast and effortless" process was more strongly activated when coordination was easy.
To investigate the genetic factors that affect fatty acid composition of beef, we compared the full-length bovine stearoyl-CoA desaturase (SCD) cDNA from 20 Japanese Black steers. Two types of the SCD gene with single nucleotide polymorphisms (SNPs) were observed in the ORF of SCD cDNA, in which an amino acid replacement from valine (type V) to alanine (type A) was predicted. We developed a method for genotyping these two SCD genes based on PCR-RFLP. We have classified 1003 Japanese Black carcasses into three genotypes, VV, VA, and AA, and compared fatty acid composition among them. The SCD type A gene contributed to higher MUFA percentage and lower melting point in intramuscular fat. The SCD genotype was not the only genetic factor contributing to fatty acid composition of Japanese Black steers, but the SCD genotype was considered one of the causes of genetic variation in fatty acid composition of Japanese Black steers. Transcription factors such as sterol regulatory element binding protein-1c (SREBP-1c) may account for the remaining part of the genetic variation in fatty acid composition.
Conventional atomic force microscopes (AFMs) take at least 30-60 s to capture an image, while dynamic biomolecular processes occur on a millisecond timescale or less. To narrow this large difference in timescale, various studies have been carried out in the past decade. These efforts have led to a maximum imaging rate of 30-60 ms/ frame for a scan range of~250 nm, with a weak tip-sample interaction force being maintained. Recent imaging studies using high-speed AFM with this capacity have shown that this new microscope can provide straightforward and prompt answers to how and what structural changes progress while individual biomolecules are at work. This article first compares high-speed AFM with its competitor (single-molecule fluorescence microscopy) on various aspects and then describes high-speed AFM instrumentation and imaging studies on biomolecular processes. The article concludes by discussing the future prospects of this cutting-edge microscopy.
The objective of the study was to investigate the fractional rate of volatile fatty acid (VFA) absorption and the expression of genes encoding for transporters and enzymes involved in the absorption and metabolism of VFA in ruminal tissue when cattle were fed high or low concentrate diets. Twelve ruminally cannulated Holstein cows were used in a randomized complete block design. The low concentrate (LC) and high concentrate (HC) diets contained 8 and 64% dietary concentrate (dry matter basis), respectively. Cows were fed their respective diet for at least 28 d, following which data and samples were collected over 6 d. Ruminal pH was measured continuously for 72 h, and the in vivo VFA absorption and passage rates were measured using Co-EDTA and n-valeric acid as markers. Ruminal tissue was collected postslaughter from the ventral sac of the rumen, and gene expression was evaluated using quantitative real-time PCR. Dry matter intake was not affected by treatment, averaging 14.9 kg/d, but cows fed HC had lower mean ruminal pH (6.03 vs. 6.48), and a greater duration (376 vs. 10 min/d) that ruminal pH was <5.8. Ruminal VFA concentration was 24 mM higher for cows fed HC compared with LC; however, the fractional rate of VFA absorption and passage from the rumen was not affected by dietary treatment, averaging 23.4 and 9.6%/h, respectively. The expression of genes encoding for enzymes involved in VFA activation and ketogenesis were not affected by treatment. Cows fed HC tended to have a relative abundance of pyruvate dehydrogenase lipoamide alpha 1 mRNA transcripts that was 1.4 times lower than that of cows fed LC, but other enzymes involved in pyruvate metabolism or regulation of the citric acid cycle were not affected. Collectively, these results suggest that the dietary forage to concentrate ratio does not affect the fractional rate of VFA absorption in vivo, but potentially alters energy metabolism in ruminal tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.