SummarySuspension-cultured poplar (Populus alba) cells produce two distinct endo-1,4-b-glucanases, one of which is released in the extracellular culture medium and the other localized in their walls. Two cDNA clones, PopCel1 and PopCel2, isolated from a poplar cDNA library, encode the extracellular and the wallbound endo-1,4-b-glucanases, respectively, based upon deduced amino acid sequences. The products of these two genes contained domains conserved in endo-1,4-b-glucanase (family 9) and showed 91.5% amino acid identity. The levels of both PopCel1 and PopCel2 mRNAs increased during the lag phase of growth and decreased rapidly during the linear phase. After the levels had decreased, they were again increased by addition of sucrose to the culture medium and further enhanced by the addition of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of sucrose. The accumulation of the mRNAs was correlated with the solubilization of cello-oligosaccharides. Cello-oligosaccharides and xyloglucan were also solubilized from the wall preparations of poplar cells incubated with enzyme preparations from the extracellular culture medium and walls. An antibody against both PopCel proteins reduced the production of cello-oligosaccharides by the extracellular enzyme by 90% and that by the wall-bound enzyme by 55%, and also prevented xyloglucan solubilization. The results show that the accumulation of poplar endo-1,4-b-glucanases is regulated indirectly by auxin in the presence of sucrose and can act on cellulose in suspension-cultured poplar cells.
To investigate the fine substrate specificities of four highly purified exo-type cellulases (Exo-A from Aspergillus niger, CBHI and CBHII from Trichoderma reesei, and Ex-1 from Irpex lacteus), water-soluble substrates such as barley glucan, xyloglucan from tamarind (Tamarindus indica L.), and their oligosaccharides were employed. Four exo-type cellulases immediately hydrolyzed 3-O-beta-D-cellotriosylglucose to produce cellobiose and laminaribiose. In contrast, CBHII showed no hydrolytic activity towards 3(2)-O-beta-D-cello-biosylcellobiose, which was hydrolyzed to cellobiose by the other exo-type cellulases. These cellulases hydrolyzed the internal linkages of barley glucan and lichenan in an endo-type fashion to produce cellobiose and mix-linked oligosaccharides as main products. The DP-lowering activities of the four exo-type cellulases on barley glucan were in the order of Ex-1, CBHII, Exo-A, and CBHI. Based on gel permeation chromatography analysis of the hydrolysates, Ex-1 seemed to attack the internal cellobiosyl unit adjacent to beta-1,3-glucosidic linkages in barley glucan molecule more frequently than did the other cellulases. Xyloglucan was hydrolyzed only by CBHI and CBHII, and produced hepta-, octa-, and nona-saccharides. In addition, a xyloglucan tetradecasaccharide (XG14) was split only to heptasaccharide (XG7) by CBHI and CBHII.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.