Existing concepts and models for glucose-stimulated insulin secretion (GSIS) are overviewed and a newer perspective has been formulated toward the physiological understanding of GSIS. A conventional model has been created on the basis of in vitro data on application of a square wave high glucose in the absence of any other stimulatory inputs. Glucose elicits rapid insulin release through an adenosine triphosphate-sensitive K + channel (K ATP channel)-dependent mechanism, which is gradually augmented in a K ATP channel-independent manner. Biphasic GSIS thus occurs. In the body, the b-cells are constantly exposed to stimulatory signals, such as glucagon-like peptide 1 (GLP-1), parasympathetic inputs, free fatty acid (FFA), amino acids and slightly suprathreshold levels of glucose, even at fasting. GLP-1 increases cellular cyclic adenosine monophosphate, parasympathetic stimulation activates protein kinase C, and FFA, amino acids and glucose generate metabolic amplification factors. Plasma glucose concentration gradually rises postprandially under such tonic stimulation. We hypothesize that these stimulatory inputs together make the b-cells responsive to glucose independently from its action on K ATP channels. Robust GSIS in patients with a loss of function mutation of the sulfonylurea receptor, a subunit of K ATP channels, is compatible with this hypothesis. Furthermore, pre-exposure of the islets to an activator of protein kinase A and/or C makes b-cells responsive to glucose in a K ATP channel-and Ca
2+-independent manner. We hypothesize that GSIS occurs in islet b-cells without glucose regulation of K ATP channels in vivo, for which priming with cyclic adenosine monophosphate, protein kinase C and non-glucose nutrients are required. To understand the physiology of GSIS, comprehensive integration of accumulated knowledge is required. (J Diabetes Invest,
Annals of the Missouri Botanical Garden Diploid Species number 2 n 0. acorifolius (Kunth) Raven-54 Collection data Venezuela, Merida, Grifo & Hahn 361 (BH) Cav. Venezuela, Dorr et al. 5044 (NY) Alophia drummondii (Graham) R. C. Foster Calydorea azurea Klatt . xiphioides (Poepp.
dRecruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.
In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP 3 ) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP-and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.