The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.
Estimates of future flood risk rely on projections from climate models. The relatively few climate models used to analyze future flood risk cannot easily quantify of their associated uncertainties. In this study, we demonstrated that the projected fluvial flood changes estimated by a new generation of climate models, the collectively known as Coupled Model Intercomparison Project Phase 6 (CMIP6), are similar to those estimated by CMIP5. The spatial patterns of the multi-model median signs of change (+ or −) were also very consistent, implying greater confidence in the projections. The model spread changed little over the course of model development, suggesting irreducibility of the model spread due to internal climate variability, and the consistent projections of models from the same institute suggest the potential to reduce uncertainties caused by model differences. Potential global exposure to flooding is projected to be proportional to the degree of warming, and a greater threat is anticipated as populations increase, demonstrating the need for immediate decisions.
The conjugation of horseradish peroxidase with wheat germ agglutinin was used to identify the effect on retrograde axonal transport of stretching the rat sciatic nerve indirectly by 10% and 20% femoral lengthening with a unilateral external fixator. To investigate the relationship between retrograde axonal transport and blood flow in the stretched nerve, nerve blood flow in the sciatic nerve was measured by a hydrogen washout technique. At 11% strain (20% femoral lengthening), the numbers of horseradish peroxidase-labelled motor neuron cells and nerve blood flow had decreased by 43% and 50%, respectively. Histological examination demonstrated ischaemic changes, but not mechanical damage. However, at 6% strain (10% femoral lengthening) there were no significant abnormalities. These findings suggest that the inhibition of retrograde axonal transport can be induced by acute stretching of the peripheral nerve and that circulatory disturbance is the main cause of the inhibition of retrograde axonal transport at the low strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.