Saliva as a sampling method is a low invasive technique for the detection of physiologically active substances, as opposed to sampling the plasma or serum. In this study, we obtained glucocorticoids transferred from the blood to the saliva from mice treated with 2.0 mg/kg via an intraperitoneal injection of cortisol. Next, to evaluate the effect of restraint stress using mouse saliva—collected under anesthesia by mixed anesthetic agents—we measured plasma and salivary corticosterone levels at 60 min after restraint stress. Moreover, to evaluate salivary corticosterone response to stress in the same individual mouse, an adequate recovery period (1, 3 and 7 days) after anesthesia was examined. The results demonstrate that exogenous cortisol was detected in the saliva and the plasma, in mice treated with cortisol. Restraint stress significantly increased corticosterone levels in both the plasma and saliva (P<0.001). Monitoring the results of individual mice showed that restraint stress significantly increased salivary corticosterone levels in all three groups (1-, 3- and 7-day recovery). However, the statistical evidence of corticosterone increase is stronger in the 7-day recovery group (P<0.001) than in the others (P<0.05). These results suggest that the corticosterone levels in saliva reflect its levels in the plasma, and salivary corticosterone is a useful, less-invasive biomarker of physical stress in mice. The present study may contribute to concepts of Reduction and Refinement of the three Rs in small animal experiments.
The purpose of this study was to create novel urate under-excretion animal models using pyrazinamide and to evaluate whether dihydropyridine calcium channel blockers (CCBs) have uricosuric effects in vivo. Adult male ICR mice were treated with pyrazinamide, vehicle (dimethyl sulfoxide: DMSO), or tap water. Thirty minutes later, pyrazinamide-treated mice were given benzbromarone, losartan, nilvadipine, nitrendipine, nifedipine or azelnidipine. Six hours after the second administration, urine (by urinary bladder puncture) and plasma were collected to measure uric acid and creatinine levels, and fractional excretion of uric acid (FEUA) and creatinine clearance (Ccr) were calculated and evaluated. There was no significant difference in the levels of plasma uric acid, plasma creatinine, Ccr, urinary N-acetyl-β-d-glucosaminidase (NAG) and urinary NAG-creatinine ratio between water, DMSO, and pyrazinamide-treated mice. But the FEUA of pyrazinamide-treated mice was significantly lower than water mice. The FEUA was significantly higher in mice taking the dihydropyridine CCBs (nilvadipine, nitrendipine, nifedipine, and high-dose azelnidipine) than in pyrazinamide-treated mice. There was no significant difference in Ccr. Thus, a novel animal model created with PZA administration was useful as a urate under-excretion animal model that was probably URAT1-mediated, and the uricosuric effects of dihydropyridine CCBs were confirmed in vivo.
There has been an increase in temperature and the incidence of extreme weather events, such as heat wave, due to global warming, which has promoted the incidence of livestock diseases. Therefore, it is important to examine the effect of changes in environmental parameters on livestock performance. The aim of this study was to examine the relationship between ambient environmental conditions in livestock pen and the physiological parameters of Holstein dairy cows. The results showed that there was a decrease in the red blood cell counts, hemoglobin concentrations, and mean corpuscular hemoglobin concentration of the cows with increasing pen temperature, wet bulb globe temperature (WBGT), and temperature humidity index (THI). Additionally, high daily variation in temperature caused a decrease in the serum albumin levels of the cows. Moreover, the lowest serum calcium, inorganic phosphorus, and magnesium concentrations were observed in November, and were negatively correlated with the 24 -hr temperature, WBGT, and THI range of the pen prior to sampling. Multiple regression analysis showed a positive correlation between serum cortisol concentration and 24 -hr WBGT range of the pen prior to samplings and packed cell volume. However, serum cortisol and total protein c oncentrations were negatively correlated. Overall, the findings of the study suggest that large variation in temperature induced stress in the cows, which could be overcome by increased water consumption and improved protein digestion and absorption by the animals, and the addition of minerals, such as calcium to the diet. KEY WORD blood examination values, cortisol, Holstein dairy cows, temperature humidity index , wet bulb globe temperature .
The anesthetic or analgesic agent of choice, route and frequency of anesthetic or analgesic administration, and stressors induce distress during the perioperative period. We evaluated a multimodal analgesic protocol using buprenorphine and meloxicam on the well-being of mice. Twenty-four Slc:ICR male mice were divided into control, anesthesia + analgesia, and surgery + anesthesia + analgesia groups. Tap water (orally: PO) and water for injection (subcutaneous: SC) were administered to the control group. Buprenorphine was administered twice (SC, 0.1 mg/kg/8 h) and meloxicam was administered thrice (PO, 5 mg/kg/24 h) to the anesthesia + analgesia and surgery + anesthesia + analgesia groups. The mice were subjected to laparotomy and assessed for several parameters. Even in absence of surgical pain, the anesthesia + analgesia group presented the same negative effects as the surgery + anesthesia + analgesia group. This multimodal analgesic protocol for mice was expected to have an analgesic effect on pain associated with laparotomy but was not sufficient to prevent food intake and weight decrease. This does not negate the need to administer analgesics, but suggests the need to focus on and care not only about the approach to relieve pain associated with surgery, but also other types of distresses to minimize negative side effects that may interfere with postoperative recovery in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.