A spin valve is a microelectronic device in which high- and low-resistance states are realized by using both the charge and spin of carriers. Spin-valve structures used in modern hard-drive read heads and magnetic random access memoriescomprise two ferromagnetic electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunnelling magnetoresistance effect. Here we demonstrate more than 100% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet on one side and a non-magnetic metal on the other side of the tunnel barrier. Ferromagneticmoments in NiFe are reversed by external fields of approximately 50 mT or less, and the exchange-spring effect of NiFe on IrMn induces rotation of antiferromagnetic moments in IrMn, which is detected by the measured tunnelling anisotropic magnetoresistance. Our work demonstrates a spintronic element whose transport characteristics are governed by an antiferromagnet. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit-coupling-induced magnetotransport anisotropy using a single magnetic electrode. The antiferromagnetic tunnelling anisotropic magnetoresistance provides a means to study magnetic characteristics of antiferromagnetic films by an electronic-transport measurement.
We estimate dark matter density for the Universe with a reheating temperature smaller than the mass of dark matter, assuming dark matter to be a weakly interacting massive particle. During the reheating process, an inflaton decays and releases high-energy particles, which are scattered inelastically by the thermal plasma and emit many particles. Dark matters are produced through these inelastic scattering processes and pair creation processes by high-energy particles. We properly take account of the Landau-Pomeranchuk-Migdal effect on inelastic processes and show that the resultant energy density of dark matter is much larger than that estimated in the literature and can be consistent with that observed when the mass of dark matter is larger than O(100) GeV. PACS numbers: 98.80.Cq, 95.35.+d, 12.60.Jv
Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to over-shoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.
We study I-balls/oscillons, which are long-lived, quasi-periodic, and spatially localized solutions in real scalar field theories. Contrary to the case of Q-balls, there is no evident conserved charge that stabilizes the localized configuration. Nevertheless, in many classical numerical simulations, it has been shown that they are extremely long-lived. In this paper, we clarify the reason for the longevity, and show how the exponential separation of time scales emerges dynamically. Those solutions are time-periodic with a typical frequency of a mass scale of a scalar field. This observation implies that they can be understood by the effective theory after integrating out relativistic modes. We find that the resulting effective theory has an approximate global U(1) symmetry reflecting an approximate number conservation in the non-relativistic regime. As a result, the profile of those solutions is obtained via the bounce method, just like Q-balls, as long as the breaking of the U(1) symmetry is small enough. We then discuss the decay processes of the I-ball/oscillon by the breaking of the U(1) symmetry, namely the production of relativistic modes via number violating processes. We show that the imaginary part is exponentially suppressed, which explains the extraordinary longevity of I-ball/oscillon. In addition, we find that there are some attractor behaviors during the evolution of I-ball/oscillon that further enhance the lifetime. The validity of our effective theory is confirmed by classical numerical simulations. Our formalism may also be useful to study condensates of ultra light bosonic dark matter, such as fuzzy dark matter, and axion stars, for instance. IntroductionCondensates of scalar fields play important roles in the early Universe. One of the most prominent examples is the inflaton field which causes the accelerated expansion of the Universe, i.e., inflation [1, 2], and may seed primordial density fluctuations [3]. A curvaton field [4-6] is another candidate to generate the primordial density fluctuations. As the Higgs field in the Standard Model, some scalar field may realize a phase transition that leads to a spontaneous symmetry breaking (SSB). One of the most important examples of this kind is the SSB of Peccei-Quinn (PQ) symmetry, which is introduced to explain the strong CP problem [7]. The SSB results in a prediction of a pseudo-Nambu-Goldstone boson called axion [8] and it is known that the sizable amount of axion can be produced in the form of condensate by the misalignment mechanism [9-11]. In the Affleck-Dine baryogenesis scenario [12][13][14], baryonic U(1) charged scalar condensates are indispensable to generate the baryon asymmetry of the Universe.Some scalar fields come to form (quasi-)stable and localized objects in the early stage of the Universe. Since the formation and time evolution of such localized objects may significantly affect the cosmological scenarios, it is important to understand their dynamics. In general, their existence is ensured by some conserved quantities. For exam...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.