Silver(I) oxalate, Ag2(C2O4), reacts with two equivalents of oleylamine (Ag:oleylamine = 1:1 mole/mole) to form an oxalate-bridged silver-oleylamine complex, [(oleylamine)Ag(micro-C2O4)Ag(oleylamine)]. The precursor complex is thermally decomposed at approximately 150 degrees C with CO2 evolution to produce Ag nanoparticles with approximately 11 nm dimension. The Ag nanoparticles contain approximately 12 wt% of oleylamines as the surface stabilizer. In the synthetic mechanism, the oxalate ligand acts as a two-electron reducing agent. The precursor complex is directly transformed into oleylamine-stabilized Ag nanoparticles in high yields of more than 80% without any additional synthetic organic solvents and reducing agents.
Biomass allocation to fine roots often increases under soil nutrient deficiency, but the fine root biomass does not often increase in old stands, even under nutrient limitation. Therefore, in old stands, the morphology, anatomy, branching architecture and mycorrhization of fine roots may compensate efficiently for nutrient acquisition by the low fine root biomass. In this study, changes in the morphology, anatomy and arbuscular mycorrhizal infection at each branching position of fine root clusters were evaluated in relation to stand age. A chronosequence (6–90 years of age) of stands in a Cryptomeria japonica D. Don plantation was used for these analyses. The fine root size parameters, such as length, weight and tip numbers of fine root clusters, increased with stand age. The specific root tip length (SRTL) decreased with increasing stand age, suggesting that the allocation to root active portions decreased with stand age. From the anatomical observation, the ephemeral root tips increased with stand age, suggesting that root tip turnover within a root cluster was high in old stands. The proportions of proto-xylem groups among branching positions indicated that the life cycles in branching hierarchy should be clearer in old stands than that in younger stands. The increasing in the mycorrhizal infection of root tips in old stands should enhance the root tip absorptive functions. The SRTL was correlated with the wood/needle ratio, suggesting that carbon limitation as the stand ages may result in decline of carbon allocation to maintain active root tips. However, increasing of the ephemeral tips and mycorrhizal infection rates may compensate the declines of tip allocation in old stands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.