Aim: Paracrine interaction between macrophages and adipocytes in obese visceral fat tissues is thought to be a trigger of chronic inflammation. The immunomodulatory effect of the short chain fatty acid, butyric acid, has been demonstrated. We hypothesize that sodium butyrate (butyrate) attenuates inflammatory responses and lipolysis generated by the interaction of macrophages and adipocytes. Methods: Using contact or transwell co-culture methods with differentiated 3T3-L1 adipocytes and RAW264.7 macrophages, we investigated the effects of butyrate on the production of tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), and the release of free glycerol, free fatty acids (FFAs) into the medium. We also examined the activity of nuclear factor-kappaB (NF-κB) and the phosphorylation of mitogen-activated protein kinases (MAPKs) in co-cultured macrophages, as well as lipase activity and expression in co-cultured adipocytes. Results: We found increased production of TNF-α, MCP-1, IL-6, and free glycerol, FFAs in the coculture medium, and butyrate significantly reduced them. Butyrate inhibited the phosphorylation of MAPKs, the activity of NF-κB in co-cultured macrophages, and suppressed lipase activity in co-cultured adipocytes. Lipase inhibitors significantly attenuated the production of TNF-α, MCP-1 and IL-6 in the co-culture medium as effectively as butyrate. Butyrate suppressed the protein production of adipose triglyceride lipase, hormone sensitive lipase, and fatty acid-binding protein 4 in co-cultured adipocytes. Pertussis toxin, which is known to block GPR41 completely, inhibited the antilipolysis effect of butyrate. Conclusion: Butyrate suppresses inflammatory responses generated by the interaction of adipocytes and macrophages through reduced lipolysis and inhibition of inflammatory signaling.
Trehalase from the bean-shaped accessory glands of the male mealworm beetle, Tenebrio molitor, was purified by acid treatment, with subsequent chromatography on columns of DEAE-cellulofine and Sephacryl S-300. The molecular masses of the native and the denatured forms were estimated to be 43 and 62 kDa by gel filtration and SDS-PAGE, respectively, an indication that the trehalase may be composed of a single polypeptide. The optimum pH of the reaction catalyzed by trehalase was 5.6-5.8. The Km for trehalose was 4.4 mmol.1(-1). Immunohistochemical experiments with trehalase-specific antiserum showed that the enzyme was localized in one specific type of secretory cell in the bean-shaped accessory gland epithelium and within the semisolid secretory mass that was a precursor to the wall of spermatophore. SDS-PAGE and immunoblotting analysis revealed the presence of a polypeptide of about 62 kDa in the spermatophore. Immunohistochemical observations showed that the trehalase was located at the outgrowth in the anterior portion of the spermatophore. When a fresh spermatophore was immersed in phosphate-buffered saline it discharged sperm in the same manner as in the bursa copulatrix of the female. Before the rupture of the expanded bulb of the spermatophore, almost all of the trehalase had dissolved in the phosphate-buffered saline. The addition of validoxylamine A to the saline, a specific inhibitor of trehalase, did not affect the expansion and evacuation of the spermatophore. These results demonstrate that trehalase, synthesized by a specific type of secretory cell in the bean-shaped accessory gland epithelium, is actively passed into the lumen of the bean-shaped accessory gland and then incorporated into the spermatophore. Trehalase appears to be one of the structural proteins of the spermatophore, although the possibility can not yet be completely ruled out that the trehalase-trehalose system functions for the nourishment and/or activation of the sperm in the bursa copulatrix of the female.
Head-space gas chromatography (GC) and high-performance liquid chromatography (HPLC) (with fluorescence detectors) methods were developed for toluene (TOL-U) and o-cresol (CR-U) in urine, respectively. In order to identify the most sensitive urinary indicator of occupational exposure to toluene vapor (TOL-A) among TOL-U, CR-U, and hippuric acid in urine (HA-U), the two methods together with an HPLC (with untraviolet detectors) method for determination of HA-U were applied in the analysis of end-of-shift urine samples from 115 solvent-exposed workers (exposed to toluene at 4 ppm as geometric mean). Regression analysis showed that TOL-U correlated with TOL-A with a significantly higher correlation coefficient than did HA-U or CR-U. With regard to the TOL-A concentrations at which the exposed subjects could be separated from the nonexposed by the analyte, TOL-U achieved separation at < 10 ppm TOL-A, whereas both HA-U and CR-U did so only when TOL-A was 30 ppm or even higher. The ratio of the analyte concentrations at 50 ppm TOL-A to those at 0 ppm TOL-A was also highest for TOL-U. Overall, the results suggest that TOL-U is a better marker of exposure to toluene vapor than HA-U or CR-U.
In inflammatory bowel diseases, interleukin-1β production is accelerated. Butyrate, a short chain fatty acid, plays an important role in inflammatory bowel diseases. We investigated the effect of butyrate on interleukin-1β production in macrophage and elucidated its underlying mechanism. We stimulated THP-1 cells, a human premonocytic cell line, by lipopolysaccharide alone and by butyrate with lipopolysaccharide. Butyrate with lipopolysaccharide increased interleukin-1β production more than lipopolysaccharide alone. Butyrate with lipopolysaccharide increased caspase-1 activity more than lipopolysaccharide alone. As for the phosphorylation pathway, PD98059 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor) decreased caspase-1 activity and interleukin-1β production to approximately 50% of the controls. Pertussis toxin (G protein-coupled signal transduction pathway inhibitor) also reduced interleukin-1β production to approximately 50%. Butyrate with lipopolysaccharide increased reactive oxygen species levels more than lipopolysaccharide alone. The addition of N-acetyl L-cysteine reduced reactive oxygen species levels to a level similar to that of lipopolysaccharide alone. Butyrate with lipopolysaccharide increased nitric oxide production more than lipopolysaccharide alone, and the addition of N-acetyl L-cysteine reduced the elevated amount of nitric oxide. In conclusions, butyrate enhances interleukin-1β production by activating caspase-1, via reactive oxygen species, the phosphorylation of MAPK, and G protein mediated pathways in lipopolysaccharide stimulated THP-1 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.