We report an ultrafast cross phase modulation (XPM) effect in intersubband transition (ISBT) of InGaAs/AlAs/AlAsSb coupled quantum wells, where the ISBT absorption of a transverse-magnetic mode pump signal induces phase modulation of a transverse-electric mode probe signal. Using waveguide-type ISBT devices, we have achieved XPM-based 10 Gbit/s wavelength conversion with a power penalty of 2.53 dB. Also, we propose XPM-based signal processing circuits for gate switching and modulation format conversion.
We have developed a Mach-Zehnder interferometric all-optical switch employing intersubband transition in an InGaAs∕AlAs∕AlAsSb-coupled double quantum well waveguide. The recently discovered cross-phase modulation phenomenon was utilized as the switching mechanism; the nonlinear index of refraction for transverse electric polarized light is induced by intersubband optical excitation using transverse magnetic pump light. We demonstrate the demultiplexing operation of 160Gbit∕s data signals to 10Gbit∕s using this switch. At the input control pulse energy of 8pJ, the demultiplexed signals showed an extinction ratio better than 10dB, and an error-free demultiplexing was achieved.
The bistability characteristics of GaN/AlN resonant tunneling diodes (RTDs) grown on a sapphire substrate by metalorganic vapor phase epitaxy (MOVPE) were investigated to better understand their physical origin and explore their use in nonvolatile memories. The bistability current-voltage (I-V) characteristics of GaN/AlN RTDs, which were due to intersubband transitions and electron accumulation in the quantum well, were clearly observed over a wide temperature range between 50 and 300 K. However, the I-V characteristics sometimes degraded at temperatures above 250 K. Complex staircase structures were observed in the voltage region showing a negative differential resistance in the I-V curve, and the forward current increased or decreased rapidly as the forward-bias voltage increased. Repeated measurements of the I-V characteristics over the wide temperature range between 50 and 300 K revealed that the bistability characteristics of GaN/AlN RTDs degraded owing to the leakage of electrons accumulating in the quantum well through a deep level in the AlN barrier associated with crystal defects such as dislocations and impurities. Therefore, reduction in crystal defect and impurity densities in the AlN barrier, and a careful design that considers deep levels are important for realizing realize ultrafast nonvolatile memories based on the bistability characteristics of GaN/AlN RTDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.