Indoleamine 2,3-dioxygenase (IDO) is induced by interferon (IFN)-gamma-mediated effects of the signal transducer and activator of transcription 1alpha (STAT1alpha) and interferon regulatory factor (IRF)-1. The induction of IDO can also be mediated through an IFN-gamma-independent mechanism, although the mechanism of induction has not been identified. In this study, we explored whether lipopolysaccharide (LPS) or several proinflammatory cytokines can induce IDO via an IFN-gamma-independent mechanism, and whether IDO induction by LPS requires the STAT1alpha and IRF-1 signaling pathways. IDO was induced by LPS or IFN-gamma in peripheral blood mononuclear cells and THP-1 cells, and a synergistic IDO induction occurred when THP-1 cells were cultured in the presence of a combination of tumor necrosis factor-alpha, interleukin-6 or interleukin-1beta. An electrophoretic mobility shift assay using STAT1alpha and IRF-1 consensus oligonucleotide probes showed no STAT1alpha or IRF-1 binding activities in LPS-stimulated THP-1 cells. Further, the LPS-induced IDO activity was inhibited by both p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) inhibitors. These findings suggest that the induction of IDO by LPS in THP-1 cells is not regulated by IFN-gamma via recruitment of STAT1alpha or IRF-1 to the intracellular signaling pathway, and may be related to the activity of the p38 MAPK pathway and NF-kappaB.
Marked increases in metabolites of the L-tryptophan-kynurenine pathway, L-kynurenine and quinolinic acid (Quin), were observed in serum and cerebrospinal fluid (CSF) of both the rat and human with renal insufficiency. The mechanisms responsible for their accumulation after renal insufficiency were investigated. In patients with chronic renal insufficiency, elevated levels of serum L-kynurenine and Quin were reduced by hemodialysis. In renal-insufficient rats, Quin and L-kynurenine levels in serum, brain, and CSF were also increased parallel to the severity of renal insufficiency. Urinary excretion of Quin (3.5-fold) and L-kynurenine (2.8-fold) was also increased. Liver L-tryptophan 2,3-dioxygenase activity (TDO), a rate-limiting enzyme of the kynurenine pathway, was increased in proportion to blood urea nitrogen and creatinine levels. Kynurenine 3-hydroxylase and quinolinic acid phosphoribosyltransferase were unchanged, but the activities of kynureninase, 3-hydroxyanthranilate dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase (ACMSDase) were significantly decreased. Systemic administrations of pyrazinamide (ACMSDase inhibitor) increased serum Quin concentrations in control rats, demonstrating that changes in body ACMSDase activities in response to renal insufficiency are important factors for the determination of serum Quin concentrations. We hypothesize the following ideas: that increased serum L-kynurenine concentrations are mainly due to the increased TDO and decreased kynureninase activities in the liver and increased serum Quin concentrations are due to the decreased ACMSDase activities in the body after renal insufficiency. The accumulation of CSF L-kynurenine is caused by the entry of increased serum L-kynurenine, and the accumulation of CSF Quin is secondary to Quin from plasma and/or Quin precursor into the brain.
ELISA detection of antibodies to citrullinated antigens, especially a second generation anti-CCP, showed higher discriminative ability than other assays, including RF, and would be useful to aid the diagnosis of RA in clinical practice.
Indoleamine 2,3-dioxygenase, the l-tryptophan–degrading enzyme, plays a key role in the powerful immunomodulatory effects on several different types of cells. Because modulation of IDO activities after viral infection may have great impact on disease progression, we investigated the role of IDO following infection with LP-BM5 murine leukemia virus. We found suppressed BM5 provirus copies and increased type I IFNs in the spleen from IDO knockout (IDO−/−) and 1-methyl-d-l-tryptophan–treated mice compared with those from wild-type (WT) mice. Additionally, the number of plasmacytoid dendritic cells in IDO−/− mice was higher in the former than in the WT mice. In addition, neutralization of type I IFNs in IDO−/− mice resulted in an increase in LP-BM5 viral replication. Moreover, the survival rate of IDO−/− mice or 1-methyl-d-l-tryptophan–treated mice infected with LP-BM5 alone or with both Toxoplasma gondii and LP-BM5 was clearly greater than the survival rate of WT mice. To our knowledge, the present study is the first report to observe suppressed virus replication with upregulated type I IFN in IDO−/− mice, suggesting that modulation of the IDO pathway may be an effective strategy for treatment of virus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.