This article presents a case study on the extension of parallel algorithms in tsunami and earthquake-cycle simulators for massively parallel execution on the K computer. We use two target applications: a tsunami-simulation program, ''JAGURS,'' and an earthquake-cycle program, ''RSGDX.'' Our optimization strategy for collective communication is to split the Message Passing Interface (MPI) communicator and perform multistage localized communication to minimize the communication frequency, transferred data size, and network congestion. Moreover, in the case of severe load imbalances, we apply cyclic distribution and extend the axes for parallelization. For each application, we conduct a performance evaluation with massively parallel execution on the K computer. It is shown that our optimized code enables JAGURS to attain a 21.8 3 speedup for collective communication and a 7.9 3 speedup for the time-step loop on 8748 nodes (69,984 cores). RSGDX attains a 4.25 3 speedup for collective communication and an 18.7 3 speedup for the time-step loop on 8192 nodes (65,536 cores).
It has long been known that the most effective in a countermeasure for stress corrosion cracking in pipe and nozzle welds is by reducing the residual stress in the portion of the weld exposed to the corrosive environment. An irradiated laser stress improvement process (L-SIP) was introduced as a method to improve residual stress inside steel pipes and nozzles. L-SIP has been applied to the pressurizer nozzles in actual plant, Tsuruga unit 2 Japan, for the first time in the world. The nozzles to which this process was applied are the surge nozzle (September 2007), safety nozzles, relief nozzle and spray line nozzle (April 2010). L-SIP can be applied without inner surface cooling because the high power laser beam can generate the sufficient temperature difference without such cooling. Where necessary to achieve optimum temperarure difference, water cooling may also be applied at the inner surface. At Tsuruga unit 2, L-SIP was successfully applied to the spray line nozzle in air-cooling mode, and the surge nozzles, 3 safety nozzles and relief nozzle in water-cooling mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.