Enzymatic sensors on complementary metal–oxide–semiconductor (CMOS) chips are realized using carbon ink and chromatography paper (ChrPr). Electrodes are fabricated from carbon ink on CMOS chips. The carbon ink electrodes work as well-behaving electrochemical electrodes. Enzyme electrodes are realized by covering the carbon ink electrodes on the CMOS chip with ChrPr supporting enzymes and electron mediators. Such enzyme electrodes successfully give anodic current proportional to the glucose concentration. Good linearity is observed up to 10 mM glucose concentration, which is sufficient for blood glucose testing applications.
The principle of the quantitative immunochromatographic strip test (IST) is proposed. Electrochemical impedance spectroscopy is shown to be capable of detecting latex beads in chromatography paper, where latex beads can serve as a label in IST. Measurements to examine the impedance changes in the absence and presence of latex beads are conducted. In the presence of latex beads, an increase of 12.5% in the bulk solution resistance is observed. This indicates that the latex-bead-labeled antigen–antibody complex can be detected electrochemically by actual IST.
An enzymatic amperometric sensor electrodes on CMOS chips using carbon ink and chromatography paper is presented. Carbon ink electrodes formed on a CMOS chip show good electrochemical performance. Such on-chip electrodes in contact with chromatography paper functionalized by glucose oxidase successfully act as a glucose sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.