Seismotectonic zonation for seismic hazard assessment of background faults and earthquakes by the Headquarters for Earthquake Research Promotion (HERP [1]) is based on the results of the seismotectonic boundaries of Kakimi et al. [2]. However, several unsolved problems, such as map scale, remain in this approach for better prediction of the magnitude and frequency of blind earthquakes. The aim of this study was to construct a new quantitative and objective seismotectonic province map for the main islands of Japan (Honshu) for rational earthquake size estimation of blind faults and earthquakes. The resolution of the map was set as the second-order map grid of ca. 10 by 10 km of the Geographic Survey of Japan. Then, the parameters of (1) observed seismicity, (2) distribution of active faults converted to earthquake moment release rate, (3) width of the seismogenic layer, and (4) Bouguer gravity anomaly were assigned independently to each grid for principal component analysis. The first principal component of the principal analysis in this study represents the degree of tectonic activity for both the northeastern and southwestern Honshu islands. The resulting principal component scores were then applied to a cluster analysis to conduct quantitative classifications, and the result provided three and nine seismotectonic provinces in the northeastern and southwestern Honshu islands, respectively.
Estimation of the magnitudes of future earthquakes produced by faults is critical in seismic hazard assessment, especially for faults that are short in extent compared with the thickness of the seismogenic layers of the upper crust. A new seismogenic fault model for earthquake size estimation was constructed by combining (a) new assessments of the precise location and distribution of active faults from aerial photograph analysis and (b) estimations of subsurface structures from geological, gravity, and seismicity datasets. The integrated results of (1) tectonic landforms determined from aerial photographs, (2) geologic data showing the distribution of geologic faults, (3) Bouguer gravity anomaly data over wavelengths of 4-200 km, and (4) seismicity data were superimposed on geographic information system (GIS) data around the nuclear power plants in Japan. The results indicate the possible occurrence of large earthquakes, because the lengths of the subsurface earthquake faults were estimated to be longer than the length of the surface faults if subsurface structures were included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.