The 2004 Mid Niigata Prefecture Earthquake (Mj = 6.8) occurred on 23 October 2004 in the northeastern part of the Niigata-Kobe Tectonic Zone where large contraction rates were observed. The mainshock was followed by an anomalously intense aftershock activity that included nine Mj ≥ 5.5 aftershocks. We deployed three temporary online seismic stations in the aftershock area from 27 October, combined data from the temporary stations with those from permanent stations located around the aftershock area, and determined the hypocenters of the mainshock and aftershocks with a joint hypocenter determination (JHD) technique. The resulting aftershock distribution showed that major events such as the mainshock, the largest aftershock (Mj = 6.5), the aftershock on 27 October (Mj = 6.1), etc. occurred on different fault planes that were located nearly parallel or perpendicular to each other. This might be due to heterogeneous structure in the source region. The strain energy was considered to have been enough accumulated on the individual fault planes. These features are probably a cause of the anomalous intensity of the aftershock activity.
A seismic reflection survey using both explosives and vibrators was conducted in June 2001 around the Nagamachi-Rifu fault, northeastern Japan. We carried out observations of four small aperture seismic arrays in the area to reveal detailed structures of the fault. Array analysis was applied to waveform data from 15 explosives to obtain P-wave scatterer distributions in the area. The obtained P-wave scatterer distribution correlates in space with microearthquake activities and heterogeneous structures such as S-wave reflectors, a structure of caldera, and Mohorovicic discontinuity. We could also image that a sub-horizontal layer with a length of about 10 km exists in the deep extension of the Nagamachi-Rifu fault beneath the seismogenic layer.
Fault zone waves have the potential to be a powerful tool to reveal the fine structure of a fault zone down to the seismogenic depth. Seismic fault zone waves include head waves, trapped waves and direct body waves propagating in the fault zone. 3-D numerical simulation is necessary to interpret the waveforms in the presence of low-velocity zones with relatively complex fault structure. We computed finite difference (FD) synthetic seismograms to fit the seismograms of explosions, which contain frequencies up to 25 Hz, recorded by a linear seismometer array across the Mozumi-Sukenobu fault, central Japan. We find fault zone head waves, direct P waves propagating within the low-velocity zone and wave trains following the direct P waves associated with the fault for both observed and synthetic waveforms. Thus, modelling of fault zone waves is expected to determine details of complex fault zone structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.