Isfahan industrial province with its numerous industrial estates in its area and consequently the amount of wastewater produced by these settlements is very difficult to deal with. Therefore, the need for proper wastewater treatment and efficient management of industrial waste water from the industrial estates of this province should be seriously addressed and followed up by the authorities. The purpose of this study is the feasibility of reuse of wastewater from industrial settlements for agricultural and irrigation purposes. The present study is a descriptive cross-sectional study. In this study, the average values obtained from the sampling and the results of the experiments on waste water from the industrial waste water treatment plant in Isfahan, 2017, have been used. Average values of BOD5, COD, TSS and so on were compared with the standards set by the Environmental Protection Agency and analyzed in Excel software. According to the results, the average values of COD, BOD5, TSS, SO4, pH and catalyst quality parameters were determined from wastewater effluents of 315,162,93,164 (mg / L), 8.3 and 32.5 (NTU) respectively. The results of the study show that the average values of the quality parameters examined from the effluent of the treatment plant other than BOD5 and COD are within the standard range and the limit for agricultural and irrigation purposes, which may lead to undesirable environmental performance of these two parameters.
Studying groundwater quality in arid and semi-arid regions is essential significant because it is used as a foremost alternative source for various purposes (human and animal consumption, economic, agriculture and irrigation). Geographic Information System and Water Quality Index techniques were utilized for visualizing and evaluating the variations of groundwater quality in the studied area. Total twelve wells were sampled and twelve groundwater quality (chemical) parameters; pH, Total Alkalinity, Total Hardness (TH), Total Dissolved Solid (TDS), Electrical Conductivity (Ec), Potassium (K), Nitrate (NO3), Sulfate (SO4), Chloride (Cl), Calcium (Ca), Magnesium (Mg) and Sodium (Na) were analyzed in the laboratory. Inverse Distance Weighted technique was used as a useful tool to create and anticipate spatial variation maps of the chemical parameters. Predicting or anticipating other areas not measured, identifying them and making use of them in the future without examining samples. The results of this research showed that 8.3% of the studied wells have excellent groundwater quality, and almost sampling wells about 75% found in good groundwater quality, while findings of groundwater quality of 16.7% studied wells belong to poor water quality due to standards of Water Quality Index. Moreover, spatial analysis in term of groundwater quality map showed that Excellent groundwater quality was detected in well 3, very good groundwater potential was noticed in six studied wells (wells 2, 6, 8, 10, 11 and 12), and other sampling wells (wells 4 and 7) were observed as good groundwater quality, while poor water quality was observed in wells (well 1 and 5). Hence, spatial distribution maps showed that the almost groundwater quality in the area about 1046.82 km² (99.04%) are suitable for drinking purpose, whereas proximate 10.18 km² (0.96%) are observed as poor water quality and inappropriate for consumptions especially in the southern part of the area.
Background: Providing fresh water suitable for drinking and farming and living organisms in the ecosystem is essential. To evaluate water quality, qualitative indicators are often employed for managing water resources and water quality protection and pollution abatement. Aim: This study evaluated the quality of Borkhar basin water resources using three different water quality indices, including National Institutes of Health Water Quality Index (NIHWQI) having nine parameters, the Oregon Water Quality Index (OWQI) having eight parameters, and the Canadian Water Quality Indices (CWQI) with 22 main parameters. Material and methods: Using data for a period of 30 years, NIHWQI, OWQI and CWQI were used. To analyze water quality of the entire basin for current and future time. New findings: Results showed that water quality of the basin was in a very moderate range according to NSFWQI, and was in a very bad range accordingly to OWQI. Water quality forecasts showed that future water quality would be bad, based on OWQI and moderate based on NSFWQI, whereas based on CWQI, it will be good for drinking, and bad for aquatic animals, recreation, irrigation, and livestock use.
Groundwater vulnerability assessment is an essential step for the efficient management of groundwater resources, especially in areas with intensive anthropogenic activities and groundwater pollution. In the present study, the DRASTIC method was applied using geographic information system (GIS) to evaluate groundwater vulnerability zones in Erbil Dumpsite area, Central Erbil Basin, North Iraq. Results showed that the area was classified into the following vulnerability classes: very low (16.97%), low (27.67%), moderate (36.55%) and high (18.81%). The southern, south-eastern and northern part of the study area had the highest vulnerability potential, whereas the central-northern, northern and north-western portion of the study area revealed the lowest vulnerability potential. Moreover, results of the single-parameter sensitivity analysis showed that amongst the seven DRASTIC parameters the unsaturated zone and the aquifer media were the most influencing parameters. Finally, the correlation of 25 nitrate concentration values with the final vulnerability map, using the Pearson correlation coefficient, gave a satisfactory result equal to R = 0.72.
Providing fresh water suitable for drinking and farming and living organisms in the ecosystem is essential. To evaluate water quality, qualitative indicators are often employed for managing water resources and water quality protection and pollution abatement. This study evaluated the quality of Borkhar basin water resources using three different water quality indices, including National Institutes of Health Water Quality Index (NIHWQI) having nine parameters, the Oregon Water Quality Index (OWQI) having eight parameters, and the Canadian Water Quality Indices (CWQI) with 22 main parameters. Using data for a period of 30 years, NIHWQI, OWQI and CWQI were used. To analyze water quality of the entire basin for current and future time. Results showed that water quality of the basin was in a very moderate range according to NSFWQI, and was in a very bad range accordingly to OWQI. Water quality forecasts showed that future water quality would be bad, based on OWQI and moderate based on NSFWQI, whereas based on CWQI, it will be good for drinking, and bad for aquatic animals, recreation, irrigation, and livestock use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.