In this paper, a new realization of electronically controllable positive and negative floating capacitor multiplier (±C) is presented. The peculiarity of the presented topology is that, for the first time, it implements a floating equivalent capacitor between its two input terminals, rather than a grounded one. To achieve the best performance, we simultaneously use the advantages provided by the current conveyor and its dual circuit, the voltage conveyor. The proposed topology is resistor free and employs one dual-output second-generation voltage conveyor (VCII±) and one electronically tunable differential voltage current conveyor (E-DVCC) as active building blocks (ABBs) and a single grounded capacitor. The value of the simulated capacitor is controlled by means of a control voltage VC which is used to control the current gain between X and Z terminals of E-DVCC. The circuit is free from any matching condition. A complete non-ideal analysis by considering parasitic impedances as well as non-ideal current and voltage gains of the used ABBs is presented. The proposed circuit is designed at the transistor level in 0.18 µm and ±0.9 V supply voltage. Simulation results using the SPICE program show a multiplication factor ranging from ±10 to ±25.4 with a maximum error of 0.56%. As an example, the application of the achieved floating capacitor as a standard high pass filter is also included.
The aim of this paper is to prove that, through a canonic approach, sinusoidal oscillators based on second-generation voltage conveyor (VCII) can be implemented. The investigation demonstrates the feasibility of the design results in a pair of new canonic oscillators based on negative type VCII (VCII−). Interestingly, the same analysis shows that no canonic oscillator configuration can be achieved using positive type VCII (VCII+), since a single VCII+ does not present the correct port conditions to implement such a device. From this analysis, it comes about that, for 5-node networks, the two presented oscillator configurations are the only possible ones and make use of two resistors, two capacitors and a single VCII−. Notably, the produced sinusoidal output signal is easily available through the low output impedance Z port of VCII, removing the need for additional voltage buffer for practical use, which is one of the main limitations of the current mode (CM) approach. The presented theory is substantiated by both LTSpice simulations and measurement results using the commercially available AD844 from Analog Devices, the latter being in a close agreement with the theory. Moreover, low values of THD are given for a wide frequency range.
In this study, a review of second-generation voltage conveyor (VCII) and current conveyor (CCII) circuits for the conditioning of bio signals and sensors is presented. The CCII is the most known current-mode active block, able to overcome some of the limitations of the classical operational amplifier, which provides an output current instead of a voltage. The VCII is nothing more than the dual of the CCII, and for this reason it enjoys almost all the properties of the CCII but also provides an easy-to-read voltage as an output signal. A broad set of solutions for relevant sensors and biosensors employed in biomedical applications is considered. This ranges from the widespread resistive and capacitive electrochemical biosensors now used in glucose and cholesterol meters and in oximetry to more specific sensors such as ISFETs, SiPMs, and ultrasonic sensors, which are finding increasing applications. This paper also discusses the main benefits of this current-mode approach over the classical voltage-mode approach in the realization of readout circuits that can be used as electronic interfaces for different types of biosensors, including higher circuit simplicity, better low-noise and/or high-speed performance, and lower signal distortion and power consumption.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.