soumission à Episciences In the world of e-learning, learning systems have sought to adapt the user's profile and the content offered to them. However, from the point of view of collaboration between learners based on adaptation to the learner profile, this adaptation has not been sufficiently explored as an important aspect of the e-learning process. Adaptation will allow users with similar or very similar profiles to be grouped together to learn in harmony while maintaining motivation and commitment to learning. This should increase the success rate of learners. This will also allow us to reuse learning paths with good success rates for future recommendations to users with the same profile. In this paper, we focus on this aspect and propose a learning system that controls learning paths adapted to the users' profile and that allows collaborative learning of users in a synchronous way. After an overview of the existing work in the field of adaptive e-learning, we propose an architecture for the piloting of this type of collaborative adaptive learning based on ontologies and orchestrated by a multi-agent system. The latter is responsible for the piloting of learning paths, the recommendation of paths in collaborative or non-collaborative mode through communication between the different agents involved, and the management of events captured by the system. Dans le monde de la formation en ligne, les systèmes d'apprentissage ont cherché à proposer un contenu adapté à tout utilisateur selon son profil.Cette adaptation a comme objectif général de permettre à l'apprenant de tirer le meilleur parti du contenu exposé des ressources d'apprentissage.Cependant, du point de vue de la collaboration entre apprenants selon l'adaptation au profil des apprenants, cette adaptation n'a pas été suffisamment explorée comme un aspect important du processus d'apprentissage en ligne.L'adaptation va permettre de grouper des utilisateurs de profil similaire ou très proche pour apprendre en harmonie tout en gardant la motivation et l'engagement nécessaire afin d'augmenter le taux de réussite des apprenants. Cet état de fait doit permettre aussi de réutiliser certains parcours d'apprentissage avec de bons taux de réussite pour de futures recommandations aux utilisateurs ayant le même profil. Dans cet article, nous mettons l'accent sur cet aspect et proposons un système d'apprentissage qui recommande des parcours d'apprentissage adaptés au profil des utilisateurs et qui permet un apprentissage collaboratif des utilisateurs de façon synchrone. Après un tour d'horizon de l'existant dans le domaine de l'apprentissage adaptatif en ligne, nous proposerons une architecture pour le pilotage de ce type d'apprentissage adaptatif collaboratif. Cette solution est fondée sur des ontologies et orchestrée par un système multi-agents. Ce dernier est responsable du pilotage des parcours d'apprentissage, de la recommandation de parcours en mode collaboratif ou non par le biais d'une communication entre les différents agents intervenants et de la gestion des événements captés par le système.
An adaptive e-learning scenario not only allows people to remain motivated and engaged in the learning process, but it also helps them expand their awareness of the courses they are interested in. e-Learning systems in recent years had to adjust with the advancement of the educational situation. Therefore many recommender systems have been presented to design and provide educational resources. However, some of the major aspects of the learning process have not been explored quite enough; for example, the adaptation to each learner. In learning, and in a precise way in the context of the lifelong learning process, adaptability is necessary to provide adequate learning resources and learning paths that suit the learners' characteristics, skills, etc. e-Learning systems should allow the learner to benefit the most from the presented learning resources content taking into account her/his learning experience. The most relevant resources should be recommended matching her/his profile and knowledge background not forgetting the learning goals she/he would like to achieve and the spare time she/he has in order to adjust the learning session with her/his goals whether it is to acquire or reinforce a certain skill. This paper proposes a personalized elearning system that recommends learning paths adapted to the users profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.