Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond–drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.
Multiple myeloma is an incurable hematological malignancy that relies on drug combinations for first and secondary lines of treatment. The inclusion of proteasome inhibitors, such as bortezomib, into these combination regimens has improved median survival. Resistance to bortezomib, however, is a common occurrence that ultimately contributes to treatment failure, and there remains a need to identify improved drug combinations. We developed the quadratic phenotypic optimization platform (QPOP) to optimize treatment combinations selected from a candidate pool of 114 approved drugs. QPOP uses quadratic surfaces to model the biological effects of drug combinations to identify effective drug combinations without reference to molecular mechanisms or predetermined drug synergy data. Applying QPOP to bortezomib-resistant multiple myeloma cell lines determined the drug combinations that collectively optimized treatment efficacy. We found that these combinations acted by reversing the DNA methylation and tumor suppressor silencing that often occur after acquired bortezomib resistance in multiple myeloma. Successive application of QPOP on a xenograft mouse model further optimized the dosages of each drug within a given combination while minimizing overall toxicity in vivo, and application of QPOP to ex vivo multiple myeloma patient samples optimized drug combinations in patient-specific contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.