Alzheimer's disease (AD) characteristically presents with early memory loss. Regulation of K ؉ channels, calcium homeostasis, and protein kinase C (PKC) activation are molecular events that have been implicated during associative memory which are also altered or defective in AD. PKC is also involved in the processing of the amyloid precursor protein (APP), a central element in AD pathophysiology. In previous studies, we demonstrated that benzolactam (BL), a novel PKC activator, reversed K ؉ channels defects and enhanced secretion of APP␣ in AD cells. In this study we present data showing that another PKC activator, bryostatin 1, at subnanomolar concentrations dramatically enhances the secretion of the ␣-secretase product sAPP␣ in fibroblasts from AD patients. We also show that BL significantly increased the amount of sAPP␣ and reduced A40 in the brains of APP[V717I] transgenic mice. In a more recently developed AD double-transgenic mouse, bryostatin was effective in reducing both brain A40 and A42. In addition, bryostatin ameliorated the rate of premature death and improved behavioral outcomes. Collectively, these data corroborate PKC and its activation as a potentially important means of ameliorating AD pathophysiology and perhaps cognitive impairment, thus offering a promising target for drug development. Because bryostatin 1 is devoid of tumor-promoting activity and is undergoing numerous clinical studies for cancer treatment in humans, it might be readily tested in patients as a potential therapeutic agent for Alzheimer's disease.
Protein kinase C (PKC) is known to participate in the processing of the amyloid precursor protein (APP). Abnormal processing of APP through the action of the beta- and gamma-secretases leads to the production of the 39-43 amino acid Abeta fragment, which is neurotoxic and which is believed to play an important role in the etiology of Alzheimer's disease. PKC activation enhances alpha-secretase activity, which results in a decrease of the amyloidogenic products of beta-secretase. In this article, we describe the synthesis of 10 new benzolactam V8 based PKC activators having side chains of varied saturation and lipophilicity linked to the aromatic ring through an amide group. The K(i) values measured for the inhibition of phorbol ester binding to PKCalpha are in the nanomolar range and show some correlation with their lipophilicity. Compounds 5g and 5h show the best binding affinity among the 10 benzolactams that were synthesized. By use of a cell line derived from an AD patient, significant enhancement of sAPPalpha secretion was achieved at 1 microM concentration for most of the compounds studied and at 0.1 microM for compounds 5e and 5f. At 1 microM the enhancement of sAPPalpha secretion for compounds 5c-h is higher than that observed for the control compound 8-(1-decynyl)benzolactam (BL). Of interest is the absence of activity found for the highly lipophilic ligand 5i, which has a K(i) of 11 nM. On the other hand, its saturated counterpart 5j, which possesses a comparable K(i) and ClogP, retains activity in the secretase assay. In the hyperplasia studies, 5f showed a modest response at 100 microg and 5e at 300 microg, suggesting that 5f was approximately 30-fold less potent than the PKC activator mezerein and 100-fold less potent than TPA. 5e was approximately 3-fold less active than 5f. On the basis of the effect of unsaturation for other potent PKC ligands, we would predict that 5e would retain biological activity in most assays but would show a marked loss of tumor-promoting activity. Compound 5e thus becomes a viable candidate compound in the search for Alzheimer's therapeutics capable of modulating amyloid processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.